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Motivation: Flexible predictive models are useful for causal inference

In extensive simulations, flexible models of the outcome have proven
efficient for ATE and CATE estimation [Dorie et al., 2018].

Question: How to select between different models for Conditional
Average Treatment Effect (CATE) estimation ?

Neyman Rubin potential outcomes [Imbens and Rubin, 2015]

Data: (Y (1),Y (0),X ,A) ∼ p(y(1), y(0), x, a)

Target quantities (estimands):

• ATE (population): τ = EY (1),Y (0)[Y (1) − Y (0)]

• Conditional Average Treatment Effect (CATE):

τ (x) = EY (1)|X=x,Y (0)|X=x[Y (1) − Y (0)|X = x]

Identifiable under strong ignorability [Rubin, 2005]

Problem Statement: select the best causal model [Schuler et al., 2018]

Given candidate models of the outcome f ∈ F : X × A → Y
Each model induces a CATE with τ̂f (x) = f (x, 1) − f (x, 0)

Select the best with mean squared error on the true CATE, called
τ -risk:

f ∗ = argminfEY ,X ,A[(τ (x) − τ̂f (x))2]

Mean Squared Error on the outcome is not what you need !

Figure 1. Toy example: On the first row, a random-forest model with
high regression performance (high R̂2) yielding poor ATE estimation
(large error between true effect τ and predicted τ̂f̂ ),

On the second row, a linear model with smaller regression performance
leading to better ATE and CATE estimations.

Take away: Mean squared error does not capture the inhomogeneity
between treated and controls.
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Metrics:
|τ − τf | = 5.2%

τ-risk(f) = 1.14

R2(f) = 0.86
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Better causal metrics ?

Idea: Select the model with the smallest τ -risk.
Difficulty: τ -risk is an oracle quantity, we need feasible (finite
samples and observable) metrics.
It is possible to do better than the usual mean squared error
µ-risk(f ) [Schuler et al., 2018, Alaa and Schaar, 2019].

Metric Equation
τ -risk(f ) Ex∼p(X )[(τ (x) − τ̂f (x))2]
µ-risk(f ) E(y ,x,a)∼D

[
(y − f (x ; a))2

]
µ-riskIPW (w , f ) E(y ,x,a)∼D

[(
a

e(x) +
1−a

1−e(x)

)
(y − f (x ; a))2

]
R-risk = τ -riskR E(y ,x,a)∼D

[(
(yi − m (xi)) − (ai − e (xi)) τf (xi)

)2]
R-risk [Nie and Wager, 2017] is more complex since it requires a
model of the outcome, m(x) = E

[
Y |X = x

]
.

Question: Why is it a pertinent risk and how well does it perform ?

R-risk appears as a reweighted oracle.

R-risk as reweighted τ -risk:

R-risk∗(f ) =
∫

x
e(x)

(
1 − e(x)

)(
τ (x) − τf (x)

)2p(x)dx

+ σ̃2
B(1) + σ̃2

B(0)

Intuition: R-risk targets the oracle for good overlap settings.

Empirical Study on simulations and three semi-synthetic datasets.

Simulation: 1000 instances using Gaussian-distributed covariates
and random functional basis to control the complexity of the response
surfaces and the overlap.

Candidates models of the outcome F :
120 candidate ridge regressions with 6 choices of regularization
parameter α ∈ [10−3, 10−2, 10−1, 1, 101, 102], coupled with a
T-Learner or a Sft-Learner (a shared random basis and 2 predictors),
10 different random seeds.

Semi-synthetic datasets. Real world covariates, simulated
outcomes and treatments : ACIC 2016 (770 instances) [Dorie et al.,
2018], ACIC 2018 (432 instances) [Shimoni et al., 2018] , Twins
(1000 instances) [Louizos et al., 2017].

Candidates models of the outcome F :
18 candidate gradient boosting with S-learner, learning rate in
{0.01, 0.1, 1}, and maximum number of leaf nodes in
{25, 27, 30, 32, 35, 40}.

Figure 2. Selection procedure.

Empirical results confirm that R-risk is more performant in all settings.

Figure 3. Rank correlation of candidate outcome
models between the oracle τ -risk and the other
metrics
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Take home messages
R-risk dominates in all settings: Including an
estimate of the outcome model into the risk seems
always beneficial.

High lack of overlap hurts model selection perfor-
mance: Overlap should be measured and controlled.

There is not a large performance gap between
metrics using oracle versus learned nuisances(
e(x),m(x)

)
: plugin-nuisances fitted with com-

plex models such as boosting trees gives good causal
metrics.

Variability between dataset instances is high:
Empirical results should be reported on numerous
simulations.

a.Caussim b.ACIC 2016
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c.ACIC 2018 d.TWINS
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