Introduction

Matthieu Doutreligne

Engineer: statistics, computer science, economics, biology

- Worked in various health related posts:
 - Paris Hospitals (NLP)
 - French ministry of health statistical services (claims+Covid)
 - Currently :

½ French High Authority of Health (quality of care on EHRs & observational data)
 ½ 3rd year PhD at Inria in the Social data team: <u>https://team.inria.fr/soda/</u>

"How to do robust and accurate treatment effect estimation from massive routine care data ?" The PhD in one sentence without any formula

Causal thinking for decision making on EHR: why and how?

Matthieu Doutreligne

Inria SODA, French High Authority of Health (Haute Autorité de Santé, HAS)

<u>Co-authors:</u>

Tristan Struja, MIT, kantonsspital Aarau Judith Abecassis, INRIA (SODA) Claire Morgand, ARS IDF

Leo Anthony Celi, MIT, Harvard Gaël Varoquaux, INRIA (SODA)

Ínsia

Causal thinking for decision making on EHR: why and how?

I. Motivation

II. Causal framework on EHRs

III. Empirical results

Big healthcare databases with rich data

Claims:

ex. French National Claims, <u>SNDS</u>, 68M patients

Mostly administrative variables eg. billing codes,

nría

HAS

HAUTE AUTORITÉ DE SANTÉ

prescriptions

5 to 200 column Excel Sheet Electronic Health Records (EHRs):

> ex. <u>Paris hospitals</u>, 10M patients Detailed clinical variables

AMBUFALL BEC

- Routine care
- Good coverage of the population
- Cheap data collection

Advantages

P Difficulties

- Routine care
 Confounding (non random interventions)
- Good coverage of the population
 Complexity
- Cheap data collection
 Heterogeneous quality

• Big data (statistical and technical difficulties)

Powerfull predictive models

Table 3 | Selected reports of machine- and deep-learning algorithms to predict clinical outcomes and related parameters

Prediction	n	AUC	Publication (Reference number)
In-hospital mortality, unplanned readmission, prolonged LOS, final discharge diagnosis	216,221	0.93*0.75+0.85"	Rajkomar et al. ⁹⁶
All-cause 3-12 month mortality	221,284	0.93	Avati et al.91
Readmission	1,068	0.78	Shameer et al. ¹⁰⁶
Sepsis	230,936	0.67	Horng et al. ¹⁰²
Septic shock	16,234	0.83	Henry et al. ¹⁰³
Severe sepsis	203,000	0.85®	Culliton et al. ¹⁰⁴
Clostridium difficile infection	256,732	0.82++	Oh et al.93

Developing diseases	704,587	range	Miotto et al.97
Diagnosis	18,590	0.96	Yang et al.90
Dementia	76,367	0.91	Cleret de Langavant et al. ⁹²
Alzheimer's Disease (+ amyloid imaging)	273	0.91	Mathotaarachchi et al. ⁹⁸
Mortality after cancer chemotherapy	26,946	0.94	Elfiky et al.95
Disease onset for 133 conditions	298,000	range	Razavian et al. ¹⁰⁵
Suicide	5,543	0.84	Walsh et al. ⁸⁶
Delirium	18,223	0.68	Wong et al. ¹⁰⁰

LOS, length of stay; n, number of patients (training+ validation datasets). For AUC values: *, in-hospital mortality; +, unplanned readmission; #, prolonged LOS; ^, all patients; @, structured + unstructured data; + +, for University of Michigan site.

Source: High-performance medicine: the convergence of human and artificial intelligence Eric Topol, Nature Medicine Jan 2019

So personnalized medicine is solved ? Great !

preprint: https://hal.science/hal-04174834v2/document

But methodological failure modes: simple example on Mimic

- Predict 28-day mortality, interested in fluid rescusitation treatment
- Train with post-treatment variables
- Evaluate on a clinically useful data set with only pre-treatment variables

But methodological failure modes: simple example on Mimic

- Predict 28-day mortality, interested in fluid rescusitation treatment
- Train with post-treatment variables
- Evaluate on a clinically useful data set with only pre-treatment variables

Who would do that ? 💿 Answer: A lot of studies !

See: Yuan, W., Beaulieu-Jones, B. K., Yu, K. H., Lipnick, S. L., Palmer, N., Loscalzo, J., ... & Kohane, I. S. (2021). Temporal bias in case-control design: preventing reliable predictions of the future. Nature communications, 12(1), 1107.

And other failure modes... eg. Exclusion of under-served populations for chest X-ray diagnosis

Automating CheXclusion With EHR + ML

Seyyed-Kalantari, Zhang, Liu, McDermott, Chen, Ghassemi.

HAS

"Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations" Nature Medicine 2021.

preprint: https://hal.science/hal-04174834v2/document

These failures occur because of shortcut features

Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). "Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition". In: JAMA dermatology

These failures occur because of shortcut features

Prediction: malignent melanoma **Intervention:** excision of nevi **Shortcut:** surgical marks

Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). "Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition". In: JAMA dermatology

Causal thinking for decision making on EHR: why and how?

I. Motivation

II. Causal framework on EHRs

III. Empirical results

Causal Framework with EHRs

Comparator A=0, metformin

🛛 Time

Emulate the **ideal trial** that you would conduct if you could recruit the patients.

Hernan, Miguel A (2021). "Methods of public health research-strengthening causal inference from observational data". In: New England Journal of Medicine

HAS HAUTE AUTORITÉ DE SANTÉ

:::::::	
TITIT	
†'†'†' †	

Target Population with features X

Eg. Patients with sepsis in the ICU

For whome, we consider giving treament A=1 or control A=0

Eg. Combination of crystalloids and albumin or Crystalloids only

Example (Mimic database usecase)

Patients with sepsis in the ICU

Target Population with features X

For whome, we consider giving the treament A=1 or the control A=0

 \bigotimes

To improve a **clinical outcome Y**

Following patients during a **specific time-period**

Combination of crystalloids and albumin or Crystalloids only

28-day survival

During 24 first hours of hospitalization

? Contrast the intervention against the control on the outcome in the target population

Causal Framework in real life : Identification

List necessary information to answer the causal question

VanderWeele, Tyler J (2019). "Principles of confounder selection". In: European journal of epidemiology

1D example

Oracle response surfaces

1D example

- Average Treatment Effect (ATE)
- Conditional Average Treatment Effect (CATE)

$$\tau = \mathbb{E}[Y(1) - Y(0)]$$

$$au(x) = \mathbb{E}[Y(1) - Y(0) \mid X = x]$$

Oracle response surfaces

1D example

HAS

HAUTE AUTORITÉ DE SANTÉ

Sampled population

preprint: https://hal.science/hal-04174834v2/document

Identification - List necessary information to answer the causal question

Categorize variables in the data base

Focus on confounding

Identification - List necessary information to answer the causal question

Causal graph to list confounders (we used <u>daggity</u>)

Red arrows point to missing confounders that we hope to control with proxies

Inría

HAS

HAUTE AUTORITÉ DE SANTÉ

Causal Framework: Estimation

Select appropriate estimators

Wager, Stefan (2020). Stats 361: Causal inference.

Causal Framework: Vibration analysis

Assess the robustness of the hypotheses

Patel, Burford, and Ioannidis (2015). "Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations". In: Journal of clinical epidemiology

Causal Framework: Treatment heterogeneity

Compute treatment effects on subpopulations

Robertson, Sarah E, Andrew Leith, Christopher H Schmid, and Issa J Dahabreh (2021). "Assessing heterogeneity of treatment effects in observational studies". In: American Journal of Epidemiology

Treatment heterogeneity – Compute treatment effects on subpopulations

Does the effect varies in different subpopulations? If yes, there is room for personalized treatment !

How to do that ?

HAS

- Take the most reliable estimate from previous steps.
- Regress the individual estimations against targeted sources heterogeneity.

Inría

Causal thinking for decision making on EHR: why and how?

I. Motivation

II. Causal framework on EHRs

III. Empirical results

Let's run some inference (Mimic-IV)

Database: MIMIC-IV (opensource), 67,000 Intense Care Unit hospital stays
 Medical question: What is the effect of albumin in combination with crystalloids compared to crystalloids alone on 28-day mortality in patients with sepsis?
 Cohort: 3,559 treated and 14,862 controls.

HAS

HAUTE AUTORITÉ DE SANT

Let's run some inference (Mimic-IV)

Estimation choices:

***** Feature aggregations:

- Last value before the start of the follow-up period,
- First observed value,
- Both the first and last values as concatenated features.

Causal estimators: Inverse Propensity Weighting (IPW), outcome modeling (G-formula) with T-Learner, Augmented Inverse Propensity Weighting (AIPW) and Double Machine Learning (DML).

Outcome and treatment estimators: regularized logistic regression and random forest

Let's run some inference (Mimic-IV)

Aggregation: first and last pre-treatment measures

ATE (95% bootstrap confidence interval)

ATE on 28-day mortality Recover RCT published evidence of little-to-no effect -> Random forests nuisance and Double ML or AIPW

Li, Binghu, Hongliang Zhao, Jie Zhang, Qingguang Yan, Tao Li, and Liangming Liu (2020). "Resuscitation fluids inseptic shock: a network meta-analysis of randomized controlled trials". In: Shock

HAUTE AUTORITÉ DE SANTÉ

Heterogeneity of Treatment Effect

Recover RCT post-hoc subgroup analysis: increasing treatment effect (relative risk) for patients with septic shock: RR=**0.87**; 95% CI, 0.77 to 0.99 vs **1.13**;95% CI, 0.92 to 1.39

Caironi, Pietro, Gianni Tognoni, Serge Masson, Roberto Fumagalli, Antonio Pesenti, Marilena Romero, CaterinaFanizza, Luisa Caspani, Stefano Faenza, Giacomo Grasselli, et al. (2014). "Albumin replacement in patients withsevere sepsis or septic shock". In: New England Journal of Medicine

Back-up Slides

••••••	• • • • • • • • • • • • • • • • • • • •	 •	••••••

preprint: https://hal.science/hal-04174834v2/document

Immortal time bias introduced with different inclusion times

Lee, H. and D. Nunan (2020). Immortal time bias, Catalogue of Bias Collaboration. https://catalogofbias.org/biases/immortaltimebias/

Immortal time bias introduced with different inclusion times

HAS

HAUTE AUTORITÉ DE SANTÉ

Ínría 🖑 Soda

Selection flowchart

Figure 12: Selection flowchart on MIMIC-IV for the emulated trial.

Does aggregation variable matters?

It seems not

ATE (95% bootstrap confidence interval)

Overlap

Difference in mean RCT Gold Standard (Caironi et al. 2014)	-0.07(-0.07 to -0.07)	+Albumin more efficient	Albumin less efficient.
Difference in mean RCT Gold Standard (Caironi et al. 2014)	-0.07(-0.07 to -0.07)	▲	
RCT Gold Standard (Caironi et al. 2014)		•	
	-0.00(-0.05 to 0.05)		
Inverse Propensity Weighting			
Agg=['median'], Est=Regularized Linear	-0.04(-0.07 to -0.02)	_	0.41
Agg=['last'], Est=Regularized Linear	-0.04(-0.06 to -0.02)	_	0.40
Agg=['first'], Est=Regularized Linear	-0.03(-0.05 to 0.00)		- 0.39
Agg=['first', 'last', 'median'], Est=Regularized Linear	-0.03(-0.05 to -0.00)		0.42
Agg=['median'], Est=Forests	-0.04(-0.05 to -0.02)	_ _	0.43
Agg=['last'], Est=Forests	-0.04(-0.05 to -0.02)	_ _	0.44
Agg=['first'], Est=Forests	-0.03(-0.05 to -0.02)		0.43
Agg=['first', 'last', 'median'], Est=Forests	-0.03(-0.05 to -0.01)	+	0.47
Double Machine Learning			
Agg=['median'], Est=Regularized Linear	-0.07(-0.08 to -0.05)	_ _	0.41
Agg=['last'], Est=Regularized Linear	-0.07(-0.08 to -0.06)		0.40
Agg=['first'], Est=Regularized Linear	-0.07(-0.08 to -0.05)		0.39
Agg=['first', 'last', 'median'], Est=Regularized Linear	-0.06(-0.07 to -0.05)		0.42
Agg=['median'], Est=Forests	-0.02(-0.04 to -0.01)		0.43
Agg=['last'], Est=Forests	-0.03(-0.04 to -0.02)	-+-	0.44
Agg=['first'], Est=Forests	-0.02(-0.03 to -0.01)	-+-	0.43
Agg=['first', 'last', 'median'], Est=Forests	-0.01(-0.02 to -0.00)	-+-	0.47
Doubly Robust (AIPW)			
Agg=['median'], Est=Regularized Linear	-0.10(-0.16 to -0.04)	•	0.41
Agg=['last'], Est=Regularized Linear	-0.09(-0.14 to -0.03)		0.40
Agg=['first'], Est=Regularized Linear	-0.08(-0.14 to -0.02)		0.39
Agg=['first', 'last', 'median'], Est=Regularized Linear	-0.08(-0.14 to -0.02)	•	0.42
Agg=['median'], Est=Forests	-0.01(-0.02 to 0.00)	-+	0.43
Agg=['last'], Est=Forests	-0.02(-0.03 to -0.00)		G.44
Agg=['first'], Est=Forests	-0.01(-0.02 to 0.00)	-+	0.43
Agg=['first', 'last', 'median'], Est=Forests	-0.00(-0.01 to 0.01)		6.47
	Agg-['last'], Est=Regularized Linear Agg=['first', 'last', 'median'], Est=Regularized Linear Agg=['first'], Est=Forests Agg=['first'], Est=Forests Agg=['first'], Est=Forests Agg=['first', 'last', 'median'], Est=Forests Double Machine Learning Agg=['median'], Est=Regularized Linear Agg=['last'], Est=Regularized Linear Agg=['last'], Est=Regularized Linear Agg=['first', 'last', 'median'], Est=Regularized Linear Agg=['first', 'last', 'median'], Est=Regularized Linear Agg=['first', 'last', 'median'], Est=Regularized Linear Agg=['first', 'last', 'median'], Est=Forests Agg=['first', 'last', 'median'], Est=Forests Doubly Robust (AIPW) Agg=['median'], Est=Regularized Linear Agg=['first', 'last', 'median'], Est=Regularized Linear Agg=['first', 'last', 'median'], Est=Regularized Linear Agg=['first', 'last', 'median'], Est=Regularized Linear Agg=['first'], Est=Forests Agg=['first'], Est=Forests Agg=['first', 'last', 'median'], Est=Forests Agg=['first'], Est	Agg=['last'], Est=Regularized Linear 0.04(-0.05 to -0.02) Agg=['first'], Est=Regularized Linear 0.03(-0.05 to -0.02) Agg=['first'], Est=Regularized Linear 0.03(-0.05 to -0.02) Agg=['first'], Est=Forests 0.04(-0.05 to -0.02) Agg=['last'], Est=Forests 0.04(-0.05 to -0.02) Agg=['first'], Est=Forests 0.03(-0.05 to -0.02) Agg=['first'], Est=Regularized Linear 0.07(-0.08 to -0.05) Agg=['first'], Est=Regularized Linear 0.07(-0.08 to -0.05) Agg=['first'], Est=Forests 0.02(-0.04 to -0.05) Agg=['first'], Est=Forests 0.02(-0.03 to -0.01) Agg=['first'], Est=Forests 0.02(-0.03 to -0.01) Agg=['first'], Est=Regularized Linear 0.01(-0.02 to -0.00) Agg=['median'], Est=Regularized Linear 0.08(-0.14 to -0.02) Agg=['median'], Est=Regularized Linear 0.08(-0.14 to -0.02) Agg=['first'], Est=Regularized Linear 0.08(-0.14 to -0.02) <	Agg=['Last'], Est=Regularized Linear -0.04(-0.05 to -0.02) Agg=['first', 'last', 'median'], Est=Regularized Linear -0.03(-0.05 to -0.02) Agg=['median'], Est=Forests -0.03(-0.05 to -0.02) Agg=['lirst'], Est=Forests -0.03(-0.05 to -0.02) Agg=['first'], Est=Regularized Linear -0.07(-0.08 to -0.05) Agg=['first'], Est=Regularized Linear -0.07(-0.08 to -0.05) Agg=['first'], Est=Regularized Linear -0.02(-0.08 to -0.05) Agg=['first'], Est=Forests -0.03(-0.04 to -0.01) Agg=['first'], Est=Forests -0.01(-0.02 to -0.00) Agg=['first'], Est=Regularized Linear -0.08(-0.14 to -0.02) Agg=['first', 'last', 'median'], Est=Regularized Linear -0.08(-0.14 to -0.02) Agg=['first'], Est=Forests -0.08(-0.14 to -0.02) Agg=['first'], Est=Forests <t< td=""></t<>

Figure 16: Vibration analysis dedicated to the aggregation choices. The choices of aggregation only marginally modify the results. When assessed with Normalized Total Variation, the overlap assumption is respected for all our choices of aggregation. The green diamonds depict the mean effect and the bar are the 95% confidence intervals obtained by 50 bootstrap repetitions.

HAS

Practical implementations issues

Packages	Simple installation	Confidence Intervals	sklearn estimator	sklearn pipeline	Propensity estimators	Doubly Robust estimators	TMLE estimator	Honest splitting (cross validation)
dowhy	1	1	1	1	1	X	×	X
EconML	1	1	1	Yes except for imputers	×	1	x	Only for doubly robust estimators
zEpid	1	1	×	×	1	1	1	Only for TMLE
causalml	×	1	1	1	1	1	1	Only for doubly robust estimators

Table 6: Selection criteria for causal python packages

Foundings:

- Counterfactual prediction lacks off-the-shelf cross-fitting estimators
- Good practices for imputation not implemented in EconML
- Bootstrap may not yield the more efficient confidence intervals and parametric confidence intervals are rarely implemented

Immortal time bias introduced with different inclusion times

Figure 8: Detecting immortal time bias – Increasing the observation period increases the temporal blank period between inclusion and treatment initialization, associating thus patients surviving longer with treatment: Immortal Time Bias. A longer observation period (72h) artificially favors the efficacy of Albumin. The estimator is a doubly robust learner (AIPW) with random forests for nuisances. This result is consistent across estimators as shown in Appendix J. The green diamonds depict the mean effect and the bar are the 95% confidence intervals obtained by 30 bootstrap repetitions.

Another study in nephrology where ITB was harder to control for: <u>https://soda.gitlabpages.inria.fr/deepacau/#intervention-comparator</u>

Causal estimators

• IPW: $\hat{\tau}_{IPW} = \frac{1}{n} \sum_{i=1}^{n} \frac{a_i y_i}{\hat{e}(x_i)} + \frac{(1-a_i)y_i}{1-\hat{e}(x_i)}$

- G-formula : $\hat{\tau}_G(f) = \frac{1}{n} \sum_{i=1}^n f(x_i, 1) f(x_i, 0)$
- Augmented Inverse Propensity Weighting :

$$\widehat{\tau}_{AIPW} = \frac{1}{n} \sum_{i=1}^{n} \left(\widehat{\mu}_{(1)} \left(X_i \right) - \widehat{\mu}_{(0)} \left(X_i \right) + \frac{A_i - \widehat{e} \left(X_i \right)}{\left(1 - \widehat{e} \left(X_i \right) \right) \widehat{e} \left(X_i \right)} \left(Y_i - \widehat{\mu}_{(A_i)} \left(X_i \right) \right) \right)$$

preprint: https://hal.science/hal-04174834v2/document

Heterogeneous Treatment Effect

Double ML, built-in: ۲

$$\hat{\tau}(\cdot) = \operatorname{argmin}_{\tau} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left((y_i - m(x_i)) - (a_i - e(x_i)) \tau(x_i^{cate}) \right)^2 \right\}$$

Double Robust, final regression: ٠

$$\arg\min_{\theta} \mathbb{E}_n \left[(\tilde{Y} - \theta (X_{CATE}) \cdot \tilde{A})^2 \right]$$

Where
$$\tilde{Y} = Y - \hat{\mu}(X, A)$$
 and $\tilde{A} = A - \hat{e}(X)$

HAS

Causal inference: Assumption

1 – Ignorability ie. Unconfoundedness

We have enough information to capture all difference between **treated** and **controls** before intervention ie. Intervention is random conditionnaly on X.

Counter Exemple of missing confounder:

- Patients with head trauma
- X = age
- H = Trauma gravity (*ex. assessed w. Glasgow*)
- A = Neurological evaluation in 2 hours
- Y = Mortality at one week

Causal inference: Assumption

1 – Ignorability ie. Unconfoundedness

We have enough information to capture all difference between **treated** and **controls** before intervention ie. Intervention is random conditionnaly on X.

Mathematically: $\{Y(0), Y(1)\} \perp A | X$

▲ Not verifiable with data only:

To understand why read https://probml.github.io/pml-book/book2.html introduction on causality

Assumptions

2 – Positivity (overlap)

Treated and controls should be close enough

 $\exists \eta > 0, st, \eta < e(x) < 1 - \eta \quad \forall x \in \mathcal{X}$

Assumptions

2 – Positivity (overlap)

Treated and controls should be close enough

 $\exists \eta > 0, st, \eta < e(x) < 1 - \eta \quad \forall x \in \mathcal{X}$

Assumptions

3 - Consistance

For a patient, the outcome corresponds to the potential outcome of its treatment.

$$Y_i = A_i Y_i(1) + (1 - A_i) Y_i(0)$$

All intervention are identical between individual and there is no interactions.

4 - Observations identiquement et indépendamment distribuées

- Full data (with potential outcomes) are iid.

Other emulated trials which could be studied in Mimic

Trial name	Criteria description	Number of patients	Criteria status	Implemented	Target RCT or meta-analysis reference
Fludrocortisone	Septic shock defined by the sepsis-3 criteria, first stay, over 18, not deceased during first 24 hours of ICU	28,763	target population	1	(Yamamoto et al., 2020)
combination for sepsis	Hydrocortisone administred and sepsis	1,855	control	1	
-	Both corticoides administered and sepsis	153	intervention	1	
High flow oxygen therapy	Over 18, hypoxemia 4 h before planed extubation (PaO2, FiO2) \leq 300 mmHg), and either High Flow Nasal Cannula (HFNC) or Non Invasive Ventilation (NIV)	801	target population	×	(Stéphan et al., 2015), (Hernán and James M. Robins, 2016)
for hypoxemia	Eligible hypoxemia and HFNC	358	intervention	X	
	Eligible hypoxemia and NIV	443	control	X	
Routine oxygen for myocardial infarction	Myocardial infarction without hypoxemia at admission: - Myocardial infarction defined with ICD9-10 codes, first stay, over 18, not deceased during first 24 hours of ICU - Hypoxemia during first 2 hours defined as either (PaO2/FiO2) <i>leq</i> 300mmHg OR SO2 <i>leq</i> 90 OR SpO2 ≤ 90	3,379	target population	•	(Hofmann et al., 2017), (Stewart et al., 2021)
	Myocardial infarction without hypoxemia at admission AND Supplemental Oxygen OR Non Invasive Vent	1,901	intervention	1	
	Myocardial infarction without hypoxemia at admission AND no ventilation of any kind during first 12 hours	605	control	1	
Prone positioning for ARDS	Acute Respiratory Distress Syndrome (ARDS) during the first 12 hours defined as (PaO2,FiO2) <i>leq</i> 300mmHg, first stay, over 18, not deceased during 24 hours of ICU	11506	trial population	1	(Munshi et al., 2017)
ioi indeb	Prone positioning and ARDS	547	intervention	 ✓ 	
	Supline position and no prone position	10,904	control		
NMBA for ARDS	ARDS during the first 12 hours defined as (PaO2,FiO2) <i>leq</i> 300mmHg, first stay, over 18, not deceased during 24 hours of ICU	11,506	trial population	1	(Papazian et al., 2010), (Ho et al., 2020)
	Neuromuscular blocking agent (NBMA) as cisatracurium injections during the stay.	709	intervention	1	
	No NBMA during the stay	10,797	control	1	
Albumin for sepsis	Septic shock defined by the sepsis-3 criteria, first stay, over 18, not deceased during first 24 hours of ICU, having crystalloids	18,421	trial population	1	(Caironi et al., 2014), (B. Li et al., 2020), (Tseng et al., 2020)
-	Sepsis-3 and crystalloids during first 24h, no albumin	14,862	control	 Image: A set of the set of the	
	Sepsis-3 and combination of crystalloids followed by albumin during first 24h	3,559	intervention	1	

Select model with small

Select a model: ML 101

MSE(y, f) on Out-Of-Samples

A) Random Forest

Select a model: ML 101

Select model with smallest MSE(y, f) on Out-Of-Samples

- A) Random Forest
- B) Linear model Bad R2, 🕷 good inference

Inría

HAS

preprint: https://hal.science/hal-04174834v2/document

References, model selection

- V. Dorie, J. Hill, U. Shalit, M. Scott, et D. Cervone, « Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition », arXiv:1707.02641 [stat], juill. 2018, Consulté le: janv. 08, 2021. [En ligne]. Disponible sur: http://arxiv.org/abs/1707.02641
 - Nie, Xinkun, et Stefan Wager. « Quasi-Oracle Estimation of Heterogeneous Treatment Effects ». *arXiv:1712.04912 [econ, math, stat]*, 13 décembre 2017. <u>http://arxiv.org/abs/1712.04912</u>.
- Schuler, Alejandro, Michael Baiocchi, Robert Tibshirani, et Nigam Shah. « A Comparison of Methods for Model Selection When Estimating Individual Treatment Effects ». *ArXiv:1804.05146 [Cs, Stat]*, 13 juin 2018. <u>http://arxiv.org/abs/1804.05146</u>
- Johansson, Fredrik D., Nathan Kallus, Uri Shalit, et David Sontag. « Learning Weighted Representations for Generalization Across Designs ». arXiv:1802.08598 [stat], 26 février 2018. <u>http://arxiv.org/abs/1802.08598</u>.
- Shalit, Uri, Fredrik D. Johansson, et David Sontag. « Estimating individual treatment effect: generalization bounds and algorithms ». arXiv:1606.03976 [cs, stat], 16 mai 2017. <u>http://arxiv.org/abs/1606.03976</u>.
- Alaa, Ahmed, et Mihaela Van Der Schaar. « Validating Causal Inference Models via Influence Functions ». In *International Conference on Machine Learning*, 191-201. PMLR, 2019. <u>http://proceedings.mlr.press/v97/alaa19a.html</u>.

