
Introduction
🤓 Matthieu Doutreligne 
🎓 Engineer: statistics, computer science, economics, biology
🔧 Worked in various health related posts: 

- Paris Hospitals (NLP)
- French ministry of health statistical services (claims+Covid)
- Currently : 

½ French High Authority of Health (quality of care on EHRs & observational data)

½ 3rd year PhD at Inria in the Social data team: https://team.inria.fr/soda/ 

“How to do robust and accurate treatment effect estimation from 
massive routine care data ?” The PhD in one sentence without any formula
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Big healthcare databases with rich data

Claims: 
ex. French National Claims, SNDS, 68M patients
Mostly administrative variables eg. billing codes, 

prescriptions

Electronic Health Records (EHRs): 
ex. Paris hospitals, 10M patients

Detailed clinical variables
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https://documentation-snds.health-data-hub.fr/
https://eds.aphp.fr/nos-services/recherche-innovation


👍  Advantages

• Routine care

• Good coverage of the population

• Cheap data collection
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👍  Advantages

• Routine care

• Good coverage of the population

• Cheap data collection
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👎  Difficulties

• Confounding (non random interventions)

• Complexity

• Heterogeneous quality

• Big data (statistical and technical difficulties)

preprint: https://hal.science/hal -04174834v2/document 



Powerfull predictive models 
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So personnalized medicine is solved ? Great ! 
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But methodological failure modes: simple example on Mimic
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- Predict 28-day mortality, interested in fluid rescusitation treatment
- Train with post-treatment variables 
- Evaluate on a clinically useful data set with only pre-treatment variables
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But methodological failure modes: simple example on Mimic
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- Predict 28-day mortality, interested in fluid rescusitation treatment
- Train with post-treatment variables 
- Evaluate on a clinically useful data set with only pre-treatment variables

Who would do that ? 😵  Answer: A lot of studies ! 
See: Yuan, W., Beaulieu-Jones, B. K., Yu, K. H., Lipnick, S. L., Palmer, N., Loscalzo, J., ... & Kohane, I. S. (2021). Temporal bias in case-control 
design: preventing reliable predictions of the future. Nature communications, 12(1), 1107.
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And other failure modes…
eg. Exclusion of under-served populations for chest X-ray diagnosis
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Seyyed-Kalantari, Zhang, Liu, McDermott, Chen, Ghassemi. 
“Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations” Nature Medicine 2021.

Largest underdiagnosis 
rates in:
- Female
- 0-20
- Black 
- Medicaid insurance

preprint: https://hal.science/hal -04174834v2/document 



These failures occur because of shortcut features
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Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). “Association between surgical skin markings in 
dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition”. In: JAMA dermatology

Prediction: malignent melanoma
Intervention: excision of nevi
Shortcut: surgical marks

Begign nevi
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True labels

CNN predicted 
score



These failures occur because of shortcut features
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Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). “Association between surgical skin markings in 
dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition”. In: JAMA dermatology

Prediction: malignent melanoma
Intervention: excision of nevi
Shortcut: surgical marks

Begign nevi

preprint: https://hal.science/hal -04174834v2/document 



I. Motivation

II. Causal framework on EHRs

III. Empirical results

Causal thinking for decision making on EHR: why and how?
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👨‍🏫 Causal Framework with EHRs
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👨‍🏫 Causal Framework: Study design

16preprint: https://hal.science/hal -04174834v2/document 

Emulate the ideal trial that you would conduct 
if you could recruit the patients.

Hernan, Miguel A (2021). “Methods of public health research–strengthening 
causal inference from observational data”. In: New England Journal of Medicine



👨‍🏫 Study design – Frame the question to avoid biases

Target Population with features X Eg. Patients with sepsis in the ICU
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👨‍🏫 Study design – Frame the question to avoid biases

For whome, we consider giving
treament A=1 or control A=0

Eg. Combination of crystalloids and albumin
or Crystalloids only
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👨‍🏫 Study design – Frame the question to avoid biases

To improve a clinical outcome Y Eg. 28-day survival

19

Potential outcomes
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👨‍🏫 Study design – Frame the question to avoid biases

Following patients during a 
specific  time-period

Eg. During 24 first hours of hospitalization
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👨‍🏫 Study design – Frame the question to avoid biases

Target Population with features X Patients with sepsis in the ICU

For whome, we consider giving
the treament A=1 or the control A=0

Combination of crystalloids and albumin
or Crystalloids only

To improve a clinical outcome Y 28-day survival

Example (Mimic database usecase)

Following patients during a 
specific  time-period

During 24 first hours of hospitalization
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❓ Contrast the intervention against the control on the outcome in the target population

preprint: https://hal.science/hal -04174834v2/document 

https://www.has-sante.fr/jcms/c_2676946/fr/prise-en-charge-initiale-de-l-accident-vasculaire-cerebral


👨‍🏫 Causal Framework in real life : Identification
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List necessary information to answer the causal 
question

VanderWeele, Tyler J (2019). “Principles of confounder selection”. In: European 
journal of epidemiology



1D example
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1D example
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🎯 Estimate one of: 
- Average Treatment Effect (ATE)
- Conditional Average Treatment Effect (CATE)



1D example
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Identification - List necessary information to answer the causal question

Focus on confounding

26

Categorize variables in the data base

👍
👍

👎👎
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Identification - List necessary information to answer the causal question

Causal graph to list 
confounders 
(we used daggity)

Red arrows point to 
missing confounders 
that we hope to 
control with proxies
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dagitty.net/


👨‍🏫 Causal Framework: Estimation 
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Select appropriate estimators

Wager, Stefan (2020). Stats 361: Causal inference.



👨‍🏫 Causal Framework: Vibration analysis 
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Assess the robustness of the hypotheses 
Patel, Burford, and Ioannidis (2015). “Assessment of vibration of effects due to model specification can demonstrate the instability of 
observational associations”. In: Journal of clinical epidemiology 



👨‍🏫 Causal Framework: Treatment heterogeneity
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Compute treatment effects on subpopulations
Robertson, Sarah E, Andrew Leith, Christopher H Schmid, and Issa J Dahabreh (2021). “Assessing heterogeneity of
treatment effects in observational studies”. In: American Journal of Epidemiology



Treatment heterogeneity – Compute treatment effects on subpopulations

32

Does the effect varies in different subpopulations?
🎯 If yes, there is room for personalized treatment !

No effect

Strong effect

preprint: https://hal.science/hal -04174834v2/document 

How to do that ? 
- Take the most reliable 

estimate  from 
previous steps.

- Regress the individual 
estimations against 
targeted sources 
heterogeneity.
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Causal thinking for decision making on EHR: why and how?
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Let’s run some inference (Mimic-IV)

📁 Database: MIMIC-IV (opensource), 67,000 Intense Care Unit hospital stays
🩺 Medical question:  What is the effect of albumin in combination with crystalloids 
compared to crystalloids alone on 28-day mortality in patients with sepsis?
Cohort: 3,559 treated and 14,862 controls.
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Let’s run some inference (Mimic-IV)

😵 Estimation choices:

🛠 Feature aggregations: 
- Last value before the start of the follow-up period, 
- First observed value, 
- Both the first and last values as concatenated features.

📈 Causal estimators: Inverse Propensity Weighting (IPW), outcome modeling (G-formula) 
with T-Learner, Augmented Inverse Propensity Weighting (AIPW) and Double Machine 
Learning (DML). 

⚙ Outcome and treatment estimators: regularized logistic regression and random forest
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Let’s run some inference (Mimic-IV)
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Recover RCT published evidence of little-to-no effect -> Random forests nuisance and Double ML or AIPW

Li, Binghu, Hongliang Zhao, Jie Zhang, Qingguang Yan, Tao Li, and Liangming Liu (2020). “Resuscitation fluids inseptic shock: a network meta-analysis 
of randomized controlled trials”. In: Shock 

preprint: https://hal.science/hal -04174834v2/document 

Aggregation: first and last pre-treatment measures



Heterogeneity of Treatment Effect
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Recover RCT post-hoc subgroup analysis:  increasing treatment effect (relative risk) for patients with septic shock:  
RR=0.87; 95% CI, 0.77 to 0.99 vs 1.13;95% CI, 0.92 to 1.39

Caironi, Pietro, Gianni Tognoni, Serge Masson, Roberto Fumagalli, Antonio Pesenti, Marilena Romero, CaterinaFanizza, Luisa Caspani, Stefano Faenza, 
Giacomo Grasselli, et al. (2014). “Albumin replacement in patients withsevere sepsis or septic shock”. In: New England Journal of Medicine 
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Back-up Slides
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Immortal time bias introduced with different inclusion times
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Lee, H. and D. Nunan (2020). Immortal time bias, Catalogue of Bias Collaboration. https://catalogofbias.org/biases/immortaltimebias/ 
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https://catalogofbias.org/biases/immortaltimebias/


Immortal time bias introduced with different inclusion times
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Selection flowchart
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Does aggregation 
matters?

It seems not
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Practical implementations issues

43

Foundings: 
- Counterfactual prediction lacks off-the-shelf cross-fitting estimators
- Good practices for imputation not implemented in EconML
- Bootstrap may not yield the more efficient confidence intervals and 

parametric confidence intervals are rarely implemented
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Immortal time bias introduced with different inclusion times
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Another study in nephrology where ITB was harder to control for: https://soda.gitlabpages.inria.fr/deepacau/#intervention-comparator 
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https://soda.gitlabpages.inria.fr/deepacau/#intervention-comparator
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💡  Causal estimators

• IPW : 

• G-formula :

• Augmented Inverse Propensity Weighting :
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💡  Heterogeneous Treatment Effect

• Double ML, built-in: 

• Double Robust, final regression:
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1 – Ignorability ie. Unconfoundedness

We have enough information to capture all difference between treated and 
controls before intervention ie. Intervention is random conditionnaly on X.

Counter Exemple of missing confounder: 
- Patients with head trauma
- X =  age
- H = Trauma gravity (ex. assessed w. Glasgow)
- A = Neurological evaluation in 2 hours
- Y = Mortality at one week

47

Causal inference: Assumption
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1 – Ignorability ie. Unconfoundedness

We have enough information to capture all difference between treated and 
controls before intervention ie. Intervention is random conditionnaly on X.
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Causal inference: Assumption

Mathematically:

⚠ Not verifiable with data only: 
To understand why read https://probml.github.io/pml-book/book2.html introduction on causality
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https://probml.github.io/pml-book/book2.html


Assumptions

2 – Positivity (overlap)

49

Treated and controls should 
be close enough
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Assumptions

2 – Positivity (overlap)
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Treated and controls should 
be close enough
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Assumptions

For a patient, the outcome corresponds to the potential outcome of its treatment.

4 - Observations identiquement et indépendamment distribuées

- Full data (with potential outcomes) are iid.

3 - Consistance

51

All intervention are identical between individual and there is no interactions.
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Other emulated trials which could be studied in Mimic

52preprint: https://hal.science/hal -04174834v2/document 



Select a model: ML 101

👨‍🏫 Select model with small 
MSE(y, f) on Out-Of-Samples

 

 

 
 

 
  

 
 
  
  
  

 

            
       

      

        
     

  

  

       

               

           

                     

                   

      

                     

                   

      

        
    

 
      

               

           

 

 

 
 

 
  

 
 
  
  
  

 

            
       

      

                     

                   

      

                     

                   

      

     
               

                                 

 

 

 
 

 
  

 
 
  
  
  

 

            
       

      

        
     

  

  

       

               

           

                     

                   

      

                     

                   

      

        
    

 
      

               

           

 

 

 
 

 
  

 
 
  
  
  

 

            
       

      

                     

                   

      

                     

                   

      

     
               

                                 

A) Random Forest 
🥇 Perfect R2, 😭 Poor inference
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Select a model: ML 101

👨‍🏫 Select model with smallest 
MSE(y, f) on Out-Of-Samples

A) Random Forest 
🥇 Perfect R2, 😭 Poor inference

B) Linear model 
 😭 Bad R2, 🥇 good inference
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