
Event2vec, a python package 
for medical concept embeddings study

2023-03-30

Poursuivi avec:

Matthieu Doutreligne

Gaël Varoquaux (superviser)

Antoine Neuraz

Initié avec:

Aude Leduc

Dinh Phong Nguyen

Albert Vuagnat

https://team.inria.fr/soda/


I. Context and motivations

II. Medical concept embeddings from structured events

III. Qualitative results

IV. Empirical evaluations🚧

2023-03-30

2Medical concept embeddings, Matthieu Doutreligne, Inria Soda



Large observational structured databases

Medico-administrative database (claims) : 
ex. SNDS

Care consumptions, reimbursements

Electronic Health Records (EHR/EMR): 
ex. APHP data warehouse

Detailed clinical variables, medical reports, …

2023-03-30

3Medical concept embeddings, Matthieu Doutreligne, Inria Soda

https://documentation-snds.health-data-hub.fr/
https://eds.aphp.fr/nos-services/recherche-innovation


Despite the lack of precise endpoints, claims contain information

Compromise

Claims : Lot of patients (N >> 1) 
vs

Cliniques : Lot of variables (D >> 1)

(Beaulieu-jones et al, 2021)
Performances of predictive models taking as inputs claims (chargemaster) or Electronic Medical Records (EMR)
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Patient trajectories : timestamped collection of tokens

Multiple applications of ML in healthcare consider a triplet event format

(Rajkomar et al., 2018; Beam et al., 2019; Bacry et al., 2020; Chazard et al., 2022)

👍️ Advantages
• Simple
• Sequential
• Comparability of all type 

of healthcare information

👎 Difficulties
• High cardinality of codes
• Choices of aggregation for 

statistical models
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Patient trajectories: How to derive proximity of 
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Trajectories ? Concepts ? 
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Medical embeddings of structured data, previous work
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First concept representations algorithms

- Tran et al., 2015: nonnegative restricted bolzmann machines for suicide-prediction models

- Miotto et al., 2016, deepatient: Auto Encoder for 78 disease onsets prediction

- Nguyen et al. 2016, deepr: CNN for deep patient representation and unplanned readmission

- Choi et al., 2016, med2vec: MLP for visits and medical codes, for next visit billing codes prediction

Inclusion of time

- Cai et al., 2019, CBOWA: Build a time-aware context window, evaluate on clustering tasks

- Beam et al., 2019, cui2vec: Implement context aware svd-ppmi, evaluate on known associations detection

- Xiang et al., 2019: extend Beam’s algorithm to fastText, applied to onset prediction of heart failure (w. LSTM)

Transformer-based models

- Rasmy et al., 2021, MedBert: Transformers for heart failure for diabetes patients (DHF) and pancreatic cancer prediction

- Solares et al., 2020, BEHRT: Transformers for 301 diseases predictions in future visits

A review paper with benchmarks

Solares et al., 2021, Transfer Learning in Electronic Health Records through Clinical Concept Embedding

https://www.sciencedirect.com/science/article/pii/S1532046415000143?via%3Dihub
https://link.springer.com/content/pdf/10.1038/srep26094.pdf
https://arxiv.org/abs/1607.07519
https://arxiv.org/pdf/1602.05568.pdf
https://arxiv.org/pdf/1806.02873.pdf
https://arxiv.org/pdf/1806.02873.pdf
https://link.springer.com/article/10.1186/s12911-019-0766-3
https://www.nature.com/articles/s41746-021-00455-y
https://www.nature.com/articles/s41598-020-62922-y
https://arxiv.org/pdf/2107.12919.pdf


Inspiration: back to basics: word2vec in NLP
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Distributional hypothesis (Firth, 1957): Two words are close iif they appear in 
similar contexts: 
“You shall know a word by the company it keeps”

The queen sits on the throne and discusses with the king the problems of the kingdom.

Proximity in the embedding space is forced by proximity in the corpus.

window = 2 x 5 words
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Focus on a context 
window approach

● SGNS (word2vec): Prediction of the 
context given a word thanks to a 
one-layer neural network

positive example negative example

● SVD-PPMI: Singular vector decomposition 
of the transformed word co-occurrence 
matrix



Adapting word2vec to patient trajectory (Beam et al., 2019)
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⏳ Build a time dependant context for the co-occurrence matrix P(ci, cj)

30 days



Why concept embeddings could be interesting ?
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👍️ Advantages

• 🤗 Sharable aggregated information
• Fewer Hyper-parameter tuning
• Simple implementation pandas + scipy
• CPU only easilly scalable w. distributed backend

• No softmax computation

👎 Difficulties

• Poor in-context comprehension
• Different choices of aggregation for visit

modelizations
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🎯Objectives

• 🔮 Predictive and interpolation models (cf. preceding review slide⤴ )

• 💊 Treatment effects estimation thanks to G-formula (Dorie et al., 2018, Wendling et al., 2018)

• 💬 Vocabulary matching



Des choix multiples de modélisation
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Event2vec, a package to easily compute concept embeddings

🐍 A python package available on pypi

⚡ A pyspark version for big data (>500m rows)

🤙Quick start and step by step guides:

https://straymat.gitlab.io/event2vec/tutorials/_0_t

uto_event2vec.html
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Load events

Build embeddings

https://straymat.gitlab.io/event2vec/tutorials/_0_tuto_event2vec.html
https://straymat.gitlab.io/event2vec/tutorials/_0_tuto_event2vec.html


Qualitative results: https://straymat.gitlab.io/event2vec/visualizations.html

APHP 

(200K random patients)
SNDS

(3M random patients)
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https://straymat.gitlab.io/event2vec/visualizations.html


Qualitative results, 
Hierarchy reconstruction
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CIM10 billing diagnoses
Third level, r=30 jours

Colored by chapter



I. Context and motivations

II. Medical concept embeddings from structured events

III. Qualitative results

IV. Empirical study🚧

2023-03-30

18Medical concept embeddings, Matthieu Doutreligne, Inria Soda



Extrinsic evaluation: Compare different models on a downstream task
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🎯 Task: rehospitalization at 30 days, for plannification and outcome modeling (g-estimation)

⚙️Models = (featurizer, estimator):

Compared featurizers:

Count vectorizer (+SVD, D=30)

Embeddings fit on train data

SNDS Embeddings (+SVD, D=30)

Compared estimators:

Random forests, Ridge classifier



Population selection for prediction
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Extraction of 200,000 random patients from APHP EDS

With complete hospitalization

Study period 2017-2022 (stable Information System)

Sufficient horizon for followup (no right censure)

Exclusions: No children, not decesead during hospitalization

At least one event in 4734 codes occurring at least 10 times:

💊 drug exposure administrations: 663, 027 events
👨⚕️ procedure occurrences: 222, 770 events
📃 condition occurrences: 203, 779 events

🤒 25, 063 patients: mean age = 54.4, female ratio = 54.1%, 

mean LOS>7 days: 20.80%



Selection procedure
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Task: Length Of Stay interpolation : <=7 days vs. >7 days
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Current results for rehospitalization or death @ 30 days
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Overall, performances are low (too difficult task ?, badly defined ?)

Logistic regression: in-domain embeddings are equivalent to SNDS embeddings

Forests smooth these differences (leverages better the missing value mask ?)



Further work
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- Study transfer capabilities inside APHP

- Study transfer capibilities with international embeddings such as cui2vec 

- Perturbe the learning by dropping some codes

- An intermediate task to study predictive performance: 

mortality prediction ? Disease onset ? Computational phenotyping ?

- Evaluation for concept proximity : eg. eds-scikit biology concepts as ground truth

🚀 Collaborations ? 

- Better inclusion of temporality with transformer-based models

- Transfer from APHP to SNDS ? 

https://aphp.github.io/eds-scikit/latest/datasets/concepts-sets/
https://aphp.github.io/eds-scikit/latest/datasets/concepts-sets/
https://aphp.github.io/eds-scikit/latest/datasets/concepts-sets/


Machine Learning for Health and Society
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HAS, mission Data

1. Données produites par la HAS 

2. Données observationnelles 

3. Connaissances textuelles

4. Organisation



Supplementary slides
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Skip-gram with Negative Sampling

- Given (word, context) = (w, c) pairs, 
and random representation in the 
embedding space: 

- The probability of occurrence of a pair 
(w, c)  is given by:

- We maximize for a pair: 

- On the whole corpus: 



SVD-PPMI as the solution of the SGNS objective

Given the Pointwise Mutual Information matrix:

Rewrite Cooccurence as: 

Enforce sparsity:

Factorization: 

Dense representations as singular components:
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Thoerical arguments in favor of Glove model (Pennington et al., 2014)
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- Offline (like SVD-PPMI)

- Avoid high cost of softmax (computeation of normalization functions)

- No cross-entropy error (model poorly long tail distributions)



SNDS, details on data
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○ Extraction: Sample of three millions of patients followed 9 years

○ Sources: DCIR (assurance maladie), PMSI (hospital billing codes) MCO, 

MCO_CE, SSR, SSR_CE, HAD 

○ Events: CIM10 (diagnostics), CCAM procedures (outpatient, inpatient, city 

care), city drugs,  city biology

○ Granularity of codes: ATC 7, CIM10 (4 characters), CCAM (7 characters), 

biology (4 characters) -> 15968 codes

○ 4416 codes in common with APHP study cohort for rehospitalization@90 days



Quantitative results
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ATC drug codes, r=30 days

Colored by chapter



Qualitative results
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CCAM billing procedures r=30 days

Colored by chapter



Benchmarks for intrisic evaluation
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Metrics (Beam et al., 2019):
- FMI: quality of clustering
- Medical Relatedness Measure: How many close neighbors in the same hierarchical 

category ? 
- NDF-RT may treat / may prevent
- UMLS causative relationship



Population selection for prediction
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Extraction of 200,000 random patients from APHP EDS

Study period 2017-2022 (stable Information System)

Sufficient horizon for followup (no right censure)

Exclusions: No children, not decesead during hospitalization

At least one event in 4923 codes occurring at least 10 times:

💊 drug exposure administrations: 608, 577 events
👨⚕️ procedure occurrences: 252, 668 events
📃 condition occurrences: 219, 666 events

🤒 34, 063 patients: mean age = 54.4, female ratio = 55.8%, 

mean rehospitalization@30d=10.5%



Task: Length Of Stay interpolation : <=7 days vs. >7 days
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Adding a simple 
temporality decay
seems very efficient.

Wo temporality decay

W temporality decay



Task: Length Of Stay interpolation : <=7 days vs. >7 days
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There is sample gains at least for boosting and forests (no saturation of the task)
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