

Towards causal model selections for big observationnal data

I. Causal inference intro and motivations

III. Empirical Study

II. Upper bound on the PEHE

IV. Ongoing questions

Towards causal model selections for big observationnal data

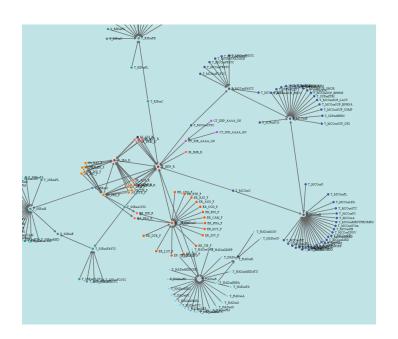
I. Causal inference intro and motivations

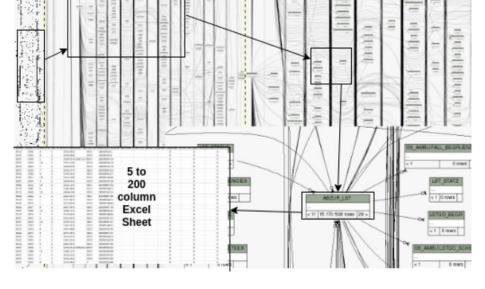
III. Empirical Study

II. Upper bound on the PEHE

IV. Ongoing questions

Big Healthcare Databases: aka observational data





Medico-administrative data (claims) : ex. <u>SNDS</u>

Healthcare consumption, reimbursements

Electronic Health Records: ex. APHP datamart, Lille, Bordeaux, ... Detailed clinicals variables, notes, ...

Real world data, almost free data, huge pile of data (stastical power)

Quality, confounders, complexity, heterogeneity, missingness, high-dimensionality, big volumes

Real world data, almost free data, huge pile of data (stastical power)

Quality, confounders, complexity, heterogeneity, missingness, high-dimensionality, big volumes

GOAL

Evaluate health technology and practices Focus on guideline evaluation

Guidelines evaluation

Target Patient Population with

Example (stroke initial healthcare)

Patients with stroke related symptoms (TIA, stroke)

For whom, it is recommanded to Intervene with action A

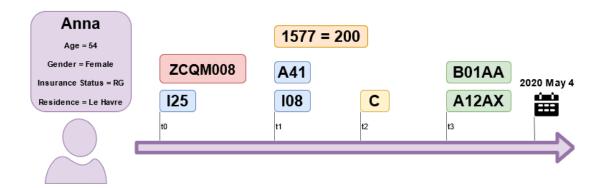
Perform cerebral scan / MRI as soon as possible

Aiming at improving a pertinent clinical outcome Y

Better survival or reeducaction

How to measure the effect of A on Y for the target population with features X?

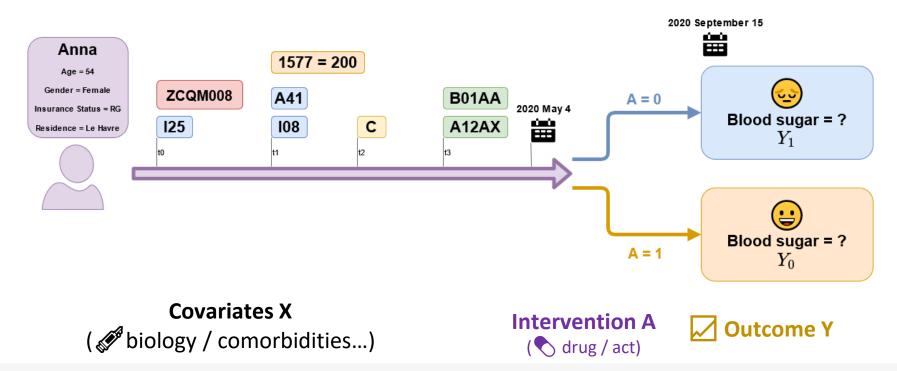
Neyman-Rubin Potential Outcome



Covariates X

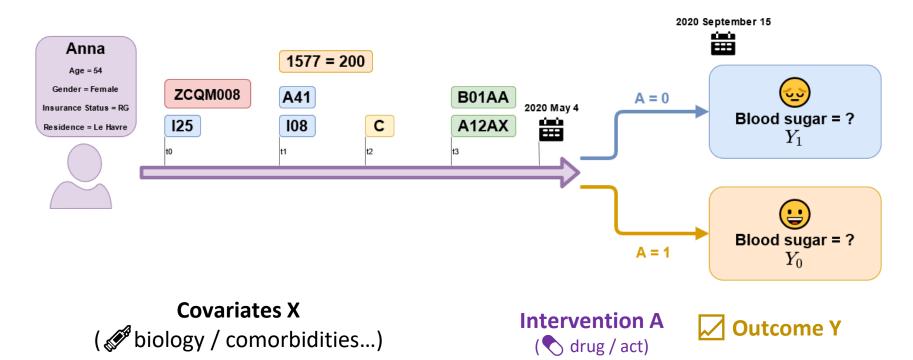
(biology / comorbidities...)

Neyman-Rubin Potential Outcome



Neyman-Rubin Potential Outcome

$$\Delta = Y(1) - Y(0)$$



Target Estimands

Complete (unobserved) distribution

$$(Y(1), Y(0), X, A) \sim \mathcal{D}^*$$

Factual (observed) distribution

$$(Y(A), X, A) \sim \mathcal{D}$$

Target Estimands

Complete (unobserved) distribution

$$(Y(1), Y(0), X, A) \sim \mathcal{D}^*$$

Factual (observed) distribution

$$(Y(A), X, A) \sim \mathcal{D}$$

Individual Treatement Effect

$$\Delta = Y(1) - Y(0)$$

Target Estimands

Complete (unobserved) distribution

$$(Y(1), Y(0), X, A) \sim \mathcal{D}^*$$

Factual (observed) distribution

$$(Y(A), X, A) \sim \mathcal{D}$$

Individual Treatement Effect

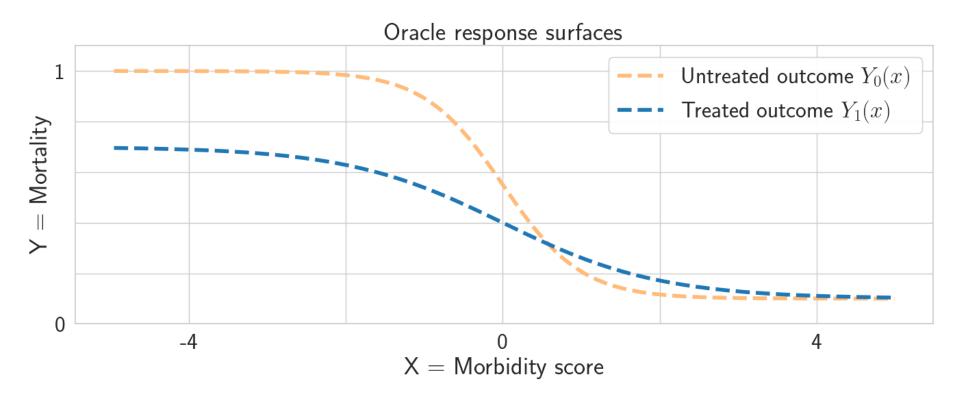
$$\Delta = Y(1) - Y(0)$$

Average Treatment Effect (ATE):

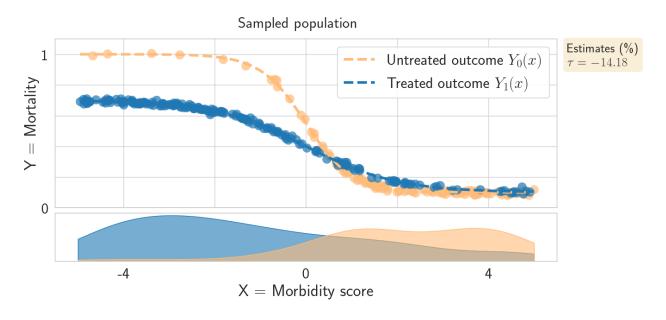
Conditional Treatment Effect (CATE):

$$G(x) = \mathbb{E}[Y(t) - Y(0) | X = x]$$

Simulated example



Simulated example

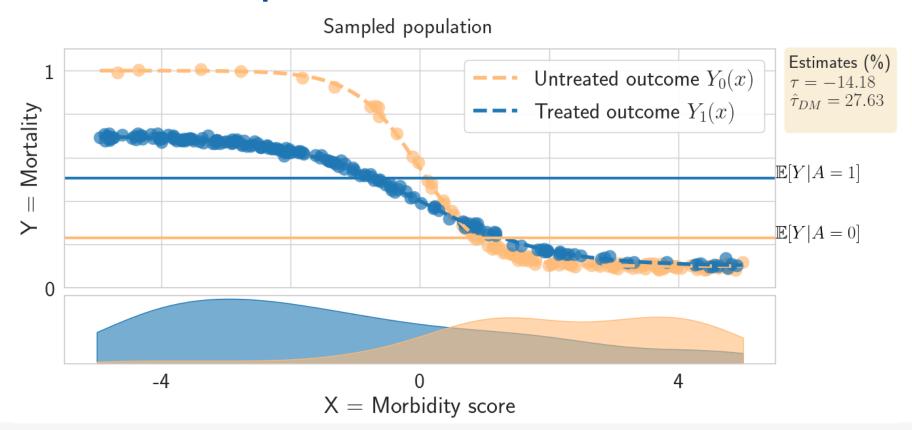


P(X, A)

A Naive solution: The Difference in Mean

$$Z_{DM} = \frac{1}{\sum_{A_i} \sum_{i:A_{i=1}} Y_i} - \frac{1}{\sum_{i:A_{i=0}} Y_i} \frac{\sum_{i:A_{i=0}} Y_i}{\sum_{i:A_{i=0}} Y_i}$$

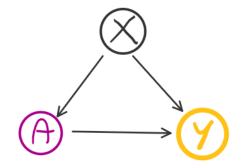
Simulated example



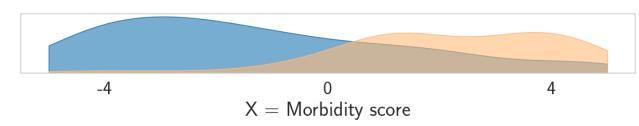
A Naive solution: The Difference in Mean

$$Z_{DM} = \frac{1}{\sum_{A_i} \sum_{i:A_{i=1}} Y_i} - \frac{1}{\sum_{i:A_{i=0}} Y_i} \frac{\sum_{i:A_{i=0}} Y_i}{\sum_{i:A_{i=0}} Y_i}$$

Coufounders X (Treatment bias)



Treated and **non-treated** are not the same



© Causal assumptions: 1 – Ignorability (conditionnal exchangeability)

Enough information available to capture differences between **treated** and **control** populations

$$\{Y(0), Y(1)\} \perp \!\!\!\perp A|X$$

Causal assumptions: 1 – Ignorability (conditionnal exchangeability)

Enough information available to capture differences between **treated** and **control** populations

$$\{Y(0), Y(1)\} \perp \!\!\!\perp A|X$$

A Not verifiable with data only -> call to domain expert 🔉

Causal assumptions: 1 – Ignorability (conditionnal exchangeability)

Enough information available to capture differences between **treated** and **control** populations

$$\{Y(0), Y(1)\} \perp \!\!\!\perp A|X$$

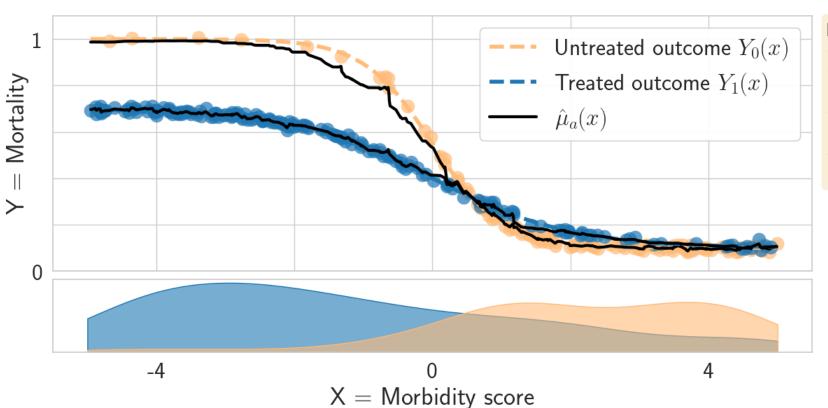
A Not verifiable with data only -> call to domain expert 🥋

Legally, a practitioner has to log into the medical records all the information on which he/she based his/her decision!

Outcome model

Q outcome Modelization

g-formula, regression, response surface fitting



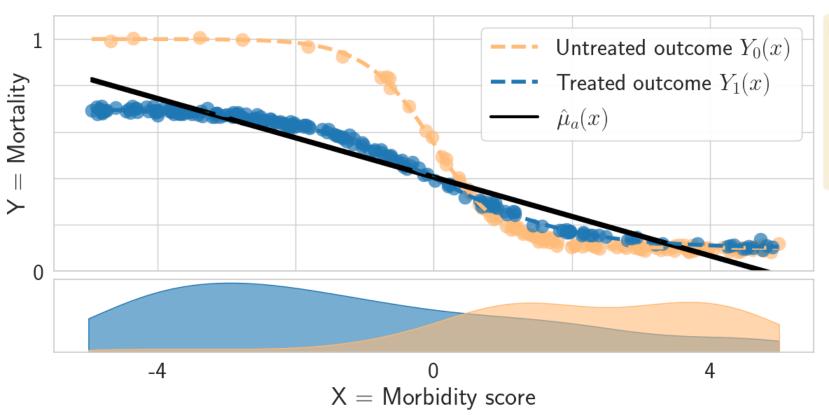
Estimates (%) $\tau = -14.18$ $\hat{\tau}_{DM} = 27.63$

 $\hat{\tau}_G(\hat{\mu}) = -12.68$

 τ -risk $(\hat{\mu}) = 0.15$

Outcome model

▲ specification bias

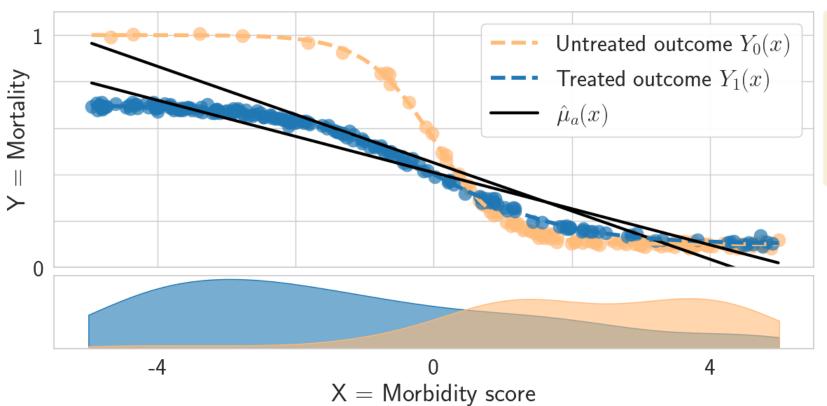


Estimates (%) $\tau = -14.18$ $\hat{\tau}_{DM} = 27.63$ $\hat{\tau}_{G}(\hat{\mu}) = -1.07$

 $\tau\text{-risk}(\hat{\mu}) = 4.84$

Outcome model

⚠ Specification + Extrapolation biases



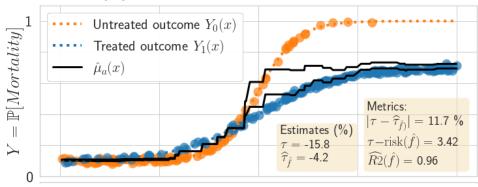
Estimates (%) $\tau = -14.18$ $\hat{\tau}_{DM} = 27.63$ $\hat{\tau}_{G}(\hat{\mu}) = -3.92$

 $\tau\text{-risk}(\hat{\mu}) = 2.53$

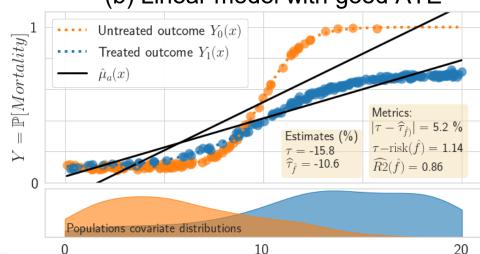
Toy example:

- (a) Random-forest estimator with **high**regression performance (high R2)
 yielding poor ATE inference
 (large error between true effect
 tau and predicted tau_f),
- (b) Linear estimator with smaller regression performance leading to better ATE and CATE inference.

(a) RF with bad ATE inference



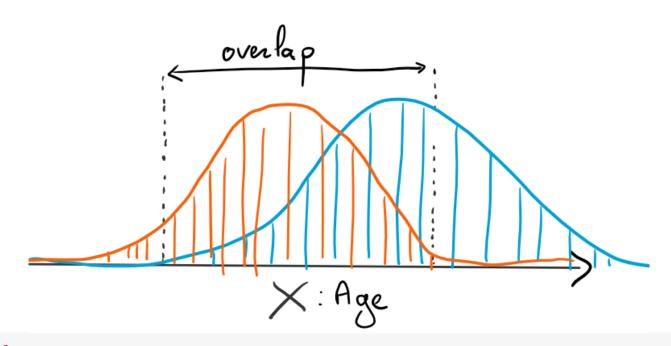
(b) Linear model with good ATE



 $X = Charlson\ score$

Causal assumptions: 2 – Positivity (overlap)

Treated and controls should be sufficiently comparable

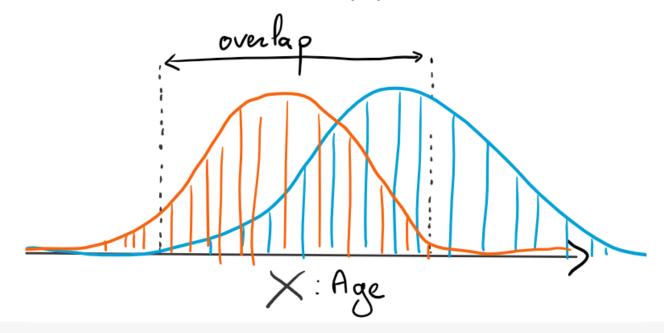


Causal assumptions: 2 – Positivity (overlap)

Given the Propensity score, $e(x) = \mathbb{P}_{\mathcal{D}}[A=1|X=x]$

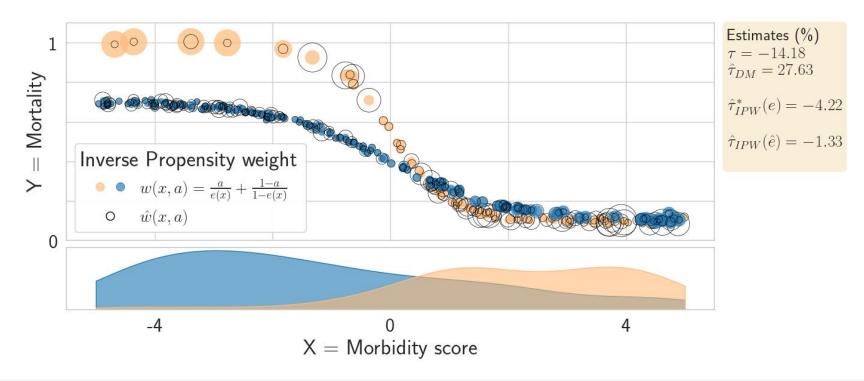
We assume:

$$\exists \eta > 0, st, \eta < e(x) < 1 - \eta \quad \forall x \in \mathcal{X}$$



Intervention model

propensity score, reponderation (close, but different from matching)



Temptative with real data

Database: MIMIC-III (opensource), 67 000 Intense Care Unit hospital stays

Medical question:

What is the effect of **cerebral imagery (A)** on **intra-hospital mortality (Y)** for patients with **stroke related billing diagnoses**?

Methodological question:

How to choose between two **Average Treatment Effect estimates**?

Multiple choices

- Raw input variables: baseline, expert selection or 50 most measured
- *** Features representation :** how to flatten the patient covariates ?
- **Causal estimator**: outcome modeling (g-formula), intervention modeling (reweighting), both (double robust)?
- ML model for outcome and intervention: logistic, random forest, gradient boosting

Sensitivity Analyse

☐ 13 baseline measurements

Average Treatment Effect (ATE) of in-ICU brain imaging on in-hospital mortality for various features representation (n_repetitions=4)

