November, 17th 2021

Towards causal model selection

Matthieu Doutreligne

(@)

Claire Morgand, HAS (Service Evaluation et Outils pour la Qualité et la Sécurité des Soins)
Gaél Varoquaux, INRIA (Equipe Social Data)

HAS

-
V27
HAUTE AUTORITE DE SANTE zea—




Towards causal model selections for big observationnal data

R R R R T R T R R R R T R R R R R R T T R TR T )

I. Causal inference intro and lll. Empirical Study
motivations

Il. Upper bound on the PEHE IV. Ongoing questions

mwljulmefmm 4 z{,a'—_‘ Towards ::l:::ba:ryn;;::;;election,



Towards causal model selections for big observationnal data

R R R R T R T R R R R T R R R R R R T T R TR T )

I. Causal inference intro and lll. Empirical Study
motivations

Il. Upper bound on the PEHE IV. Ongoing questions

mwljulmefmm 4 z{,a'—_‘ Towards '\(l:;::qba;rynz;)t::;election,



I Big Healthcare Databases: aka observational data
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Medico-administrative data (claims) : Electronic Health Records:
ex. SNDS ex. APHP datamart, Lille, Bordeaux, ...
Healthcare consumption, reimbursements Detailed clinicals variables, notes, ...
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https://documentation-snds.health-data-hub.fr/
https://eds.aphp.fr/nos-services/recherche-innovation

’® Promesses

Real world data, almost free data, huge pile of data (stastical power)

Quality, confounders, complexity, heterogeneity, missingness, high-dimensionality, big
volumes
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B Promesses

Real world data, almost free data, huge pile of data (stastical power)

Quality, confounders, complexity, heterogeneity, missingness, high-dimensionality, big
volumes

Evaluate health technology and practices
Focus on guideline evaluation
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Guidelines evaluation

Example (stroke initial healthcare)

i.i.i.4 Target Patient Population with Patients with stroke related symptoms

it Features X (TIA, stroke)

@ For whom, it is recommanded to Perform cerebral scan / MRI as soon as
® Intervene with action A possible

Aiming at improving a pertinent clinical ~ Better
@ outcome Y

@ How to measure the effect of A on Y for the target population with features X ?
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https://www.has-sante.fr/jcms/c_2676946/fr/prise-en-charge-initiale-de-l-accident-vasculaire-cerebral

I 2 Neyman-Rubin Potential Outcome
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I 2 Neyman-Rubin Potential Outcome
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I 2 Neyman-Rubin Potential Outcome

A=Y(1) - Y(0)
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ITarget Estimands

Complete (unobserved) distribution

Factual (observed) distribution

To

war

(Y(1),Y(0), X, A) ~ D*
(Y(A), X, A) ~D
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November, 17th 2021

11



I Target Estimands

Complete (unobserved) distribution

Factual (observed) distribution

@ Individual Treatement Effect

To

war

(Y(1),Y(0), X, A) ~ D*
(Y(A), X, A) ~D

A=Y(1) -
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Target Estimands
Complete (unobserved) distribution (Y(l) Y(U) X fl) ~ D*

Factual (observed) distribution (Y(A) X A) ~ D

@ Individual Treatement Effect A=Y(1)-

Average Treatment Effect (ATE) : - = E E 7 Ci) — y ( o>:(

Conditional Treatment Effect (CATE): & (z) = éE_C Vi4) — 7o) | K= x,j
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ISimuIated example

Oracle response surfaces
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I Simulated example

Sampled population
Estimates (%)
Untreated outcome Yy(z) = 7= —14.18

[y

= == Treated outcome Yl(sc)

Mortality

Y —

e

0;
4 0 4

X = Morbidity score

P(X, A)

Towards causal model selection,
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IA Naive solution: The Difference in Mean
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I Simulated examp|e @ Difference in Mean

Sampled population
Estimates (%)

1 Untreated outcome Yj(z) 7= —14.18
Z === Treated outcome Y7(x) "o = 21.63
£
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X = Morbidity score
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IA Naive solution: The Difference in Mean
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@ Coufounders X (Treatment bias) \

Treated and non-treated g
are not the same

-4 0
X = Morbidity score
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I @ Causal assumptions: 1 — Ignorability
(conditionnal exchangeability)

Enough information available to capture differences between treated and control populations

1Y(0), Y(1)) AL AIX

”~
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I @ Causal assumptions: 1 — Ignorability
(conditionnal exchangeability)

Enough information available to capture differences between treated and populations

1Y(0), Y(1)) AL AIX

A\ Not verifiable with data only -> call to domain expert
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I @ Causal assumptions: 1 — Ignorability
(conditionnal exchangeability)

Enough information available to capture differences between treated and populations

1Y(0), Y(1)) AL AIX

A\ Not verifiable with data only -> call to domain expert

@ Legally, a practitioner has to log into the medical records all the
information on which he/she based his/her decision !
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I Outcome model Q outcome Modelization

Mortality

Y —

g-formula, regression, response surface fitting

Estimates (%)

Untreated outcome Yy(z) 7= —14.18
Tpar = 27.63
=== Treated outcome Yi(z) o
- ﬂa(x) Ta(ft) = —12.68
T-risk(ft) = 0.15

0 4
X = Morbidity score
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I Outcome model A\ specification bias

Mortality

Y —

Estimates (%)

1 Untreated outcome Yp(z) = 7= —14.18
Toar = 27.63
=== Treated outcome Y)(x) o
—_ ﬂa(fx‘?) Tali) = —1.07
T-risk(j1) = 4.84
0

0 4
X = Morbidity score
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I Outcome model /\ Specification + Extrapolation biases

Mortality

Y —

Estimates (%)

1 Untreated outcome Yj(z) = 7= —14.18
Tpa = 27.63
=== Treated outcome Yi(z) o
—_ ﬂa(x) Telft) = —3.92
T-risk (1) = 2.53
0
-4 0 4
X = Morbidity score
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I Toy example:

(a) Random-forest estimator with high
regression performance (high R2)
yielding poor ATE inference
(large error between true effect
tau and predicted tau_f),

(b) Linear estimator with smaller

regression performance leading to
better ATE and CATE inference.

Towards causal model selection,

(a) RF with bad ATE inference
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I @ Causal assumptions: 2 — Positivity (overlap)

Treated and controls should be sufficiently comparable
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I @ Causal assumptions: 2 — Positivity (overlap)

Given the Propensity score, ¢(r) = Pp[A = 1|X = 7]

We assume : E|T]>0,St,1‘)<e(X)<1—T] Vx € X
:{ oxf%qr 5
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I @ Intervention model

propensity score, reponderation (close, but different from matching)
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P12
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I Temptative with real data

[Z7 Database: MIMIC-III (opensource), 67 000 Intense Care Unit hospital stays

% Medical question:
What is the effect of cerebral imagery (A) on intra-hospital mortality (Y) for
patients with stroke related billing diagnoses ?

2 Methodological question:
How to choose between two Average Treatment Effect estimates ?

r d
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Multiple choices

® Raw input variables : baseline, expert selection or 50 most measured
% Features representation : how to flatten the patient covariates ?

«=- Causal estimator : outcome modeling (g-formula), intervention modeling
(reweighting), both (double robust) ?

/] ML model for outcome and intervention : logistic, random forest, gradient boosting

”~
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I Sensitivity Analyse [=7 13 baseline measurements

Average Treatment Effect (ATE) of in-ICU brain imaging on in-hospital mortality
for various features representation (n_repetitions=4)
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@ How to choose ? Average Treatment Effect
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