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Big Healthcare Databases: aka observational data

Medico-administrative data (claims) : 
ex. SNDS

Healthcare consumption, reimbursements

Electronic Health Records: 
ex. APHP datamart, Lille, Bordeaux, …

Detailed clinicals variables, notes, …

November, 17th 2021

4Towards causal model selection,

https://documentation-snds.health-data-hub.fr/
https://eds.aphp.fr/nos-services/recherche-innovation


👍 Promesses 

Real world data, almost free data, huge pile of data (stastical power)

👎 Difficulties

Quality, confounders, complexity, heterogeneity, missingness, high-dimensionality, big 
volumes
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GOAL 
Evaluate health technology and practices 

Focus on guideline evaluation
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Guidelines evaluation

Target Patient Population with 
Features X

Patients with stroke related symptoms
(TIA, stroke)

For whom, it is recommanded to 
Intervene with action A

Perform cerebral scan / MRI as soon as 
possible

Aiming at improving a pertinent clinical
outcome Y

Better survival or reeducaction

🤨 How to measure the effect of A on Y for the target population with features X ? 
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Example (stroke initial healthcare)

Matthieu Doutreligne, Inference causale à partir d'embeddings de séjours dans une base clinique

https://www.has-sante.fr/jcms/c_2676946/fr/prise-en-charge-initiale-de-l-accident-vasculaire-cerebral


👨‍🏫 Neyman-Rubin Potential Outcome
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Covariates X
(💉biology / comorbidities…)



👨‍🏫 Neyman-Rubin Potential Outcome
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Intervention A
(💊 drug / act)

📈Outcome Y
Covariates X

(💉biology / comorbidities…)



👨‍🏫 Neyman-Rubin Potential Outcome
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Intervention A
(💊 drug / act)

📈Outcome Y
Covariates X

(💉biology / comorbidities…)

∆ = Y(1) – Y(0)



Target Estimands
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Complete (unobserved) distribution

Factual (observed) distribution



Target Estimands
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Complete (unobserved) distribution

Factual (observed) distribution

∆ = Y(1) – Y(0)😍 Individual Treatement Effect



Target Estimands

Average Treatment Effect (ATE) : 
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Conditional Treatment Effect (CATE) : 

Complete (unobserved) distribution

Factual (observed) distribution

∆ = Y(1) – Y(0)😭 Individual Treatement Effect



Simulated example
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Simulated example
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P(X, A)



A Naive solution: The Difference in Mean
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Simulated example
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😱 Difference in Mean



A Naive solution: The Difference in Mean

😕 Coufounders X (Treatment bias)

Treated and non-treated
are not the same
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Enough information available to capture differences between treated and control populations

November, 17th 2021

19

🤓 Causal assumptions: 1 – Ignorability
(conditionnal exchangeability)
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(conditionnal exchangeability)
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⚠ Not verifiable with data only -> call to domain expert 👩‍⚕️
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🤓 Causal assumptions: 1 – Ignorability
(conditionnal exchangeability)
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⚠ Not verifiable with data only -> call to domain expert 👩‍⚕️

🥰 Legally, a practitioner has to log into the medical records all the 
information on which he/she based his/her decision ! 



Outcome model 💡 outcome Modelization
g-formula, regression, response surface fitting
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Outcome model
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⚠ specification bias



Outcome model
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⚠ Specification + Extrapolation biases



(a) RF with bad ATE inference

(b) Linear model with good ATE
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Toy example: 

(a) Random-forest estimator with high 

regression performance (high R2)

yielding poor ATE inference

(large error between true effect

tau and predicted tau_f),

(b) Linear estimator with smaller 

regression performance leading to 

better ATE and CATE inference.



🤓 Causal assumptions: 2 – Positivity (overlap)
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Treated and controls should be sufficiently comparable



🤓 Causal assumptions: 2 – Positivity (overlap)
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Given the Propensity score,

We assume : 



💡 Intervention model

propensity score, reponderation (close, but different from matching)
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Temptative with real data

📁 Database: MIMIC-III (opensource), 67 000 Intense Care Unit hospital stays

🩺Medical question:
What is the effect of cerebral imagery (A) on intra-hospital mortality (Y) for 

patients with stroke related billing diagnoses ?

📚Methodological question:
How to choose between two Average Treatment Effect estimates ? 
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😵 Multiple choices
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🗂 Raw input variables : baseline, expert selection or 50 most measured

🛠 Features representation : how to flatten the patient covariates ? 

✏ Causal estimator : outcome modeling (g-formula), intervention modeling 
(reweighting), both (double robust) ?

📈ML model for outcome and  intervention : logistic, random forest, gradient boosting



Sensitivity Analyse

November, 17th 2021

37

🚨 How to choose ? 

Towards causal model selection,

📂 13 baseline measurements
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