Representations and inference from
time-varying routine care data

Matthieu Doutreligne
Inria SODA,
Haute Autorité de Santé

o

Direction of the thesis: : Co-supervision
Gaél Varoquaux, INRIA SODA ’ Claire Morgand, ARS IDF




Important considerations in public health

. . Population of young, working-age and elderly, Europe
Fast demographic evolution
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Data source: United Nations, World Population Prospects (2022) OurWorldInData.org/age-structure | CC BY




Important considerations in public health

Fast demographic evolution

= No comorbidities 1-2 comorbidities ® 3+ comorbidities
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Important considerations in public health

Fast demographic evolution

Consequences:
* Increasing comorbidities

e Scarcity of medical practionners
Constrained financial resources

Increasing number of available
treatments to choose among

Projection for France of:
— Standardized healthcare supply
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Les médecins d’ici a 2040 : une population plus jeune, plus féminisée et plus souvent
salariée, Etudes et Résultats, Drees, Ministére de la Santé et de la Prévention, mai 2017

Population ageing puts a lot of constraint on modern healthcare systems



I These constraints call for resource optimization

Healthcare data can contribute thanks to better:
* Planning
* Prevention

* Choice of effective interventions adapted to each patient

Healthcare data can help to optimize resource allocation



I Routine healthcare databases (Real World Data)
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Claims:
ex. French National Claims, SNDS, 68M patients
Mostly administrative variables eg. billing codes, prescriptions

Clinical Health Records (CHRs):
ex. Paris hospitals (AP-HP), 10M patients
Detailed clinical variables

Large routine care databases are increasingly available


https://documentation-snds.health-data-hub.fr/
https://eds.aphp.fr/nos-services/recherche-innovation

I Characteristics of routine care data

B Benefits for public health
* Routine care
* Good coverage of the population

* Cheap data collection



I Characteristics of routine care data

B Benefits for public health

* Routine care e Confounding (non random interventions)
* Good coverage of the population <« Complexity

* Cheap data collection * Heterogeneous quality

* High dimensional data

The characteristics of routine care data require dedicated methods and questions 8



How can routine care data contribute to
better resource allocation?



IContributions

I. Exploring a complexity gradient in representation and predictive models for EHRs
ongoing work

Il. Prediction is not all we need: Causal thinking for decision making on EHRs
submitted to Lancet Digital Health

lll. How to select predictive models for causal inference?
Rework in-progress for submission to Jamia

IV. Potential and challenges of Clinical Data Warehouse, a case study in France
published in PLOS Digital Health

10



Examples of resource optimization

* Prevent acute events by considering risk reduction procedures
* Allocate human resources in priority to potentially long stays

* Avoid early hospital discharges to diminish preventable readmission

11



I Examples of resource optimization

* Prevent acute events by considering risk reduction procedures
* Allocate human resources in priority to potentially long stays

* Avoid early hospital discharges to diminish preventable readmission

We need to better understand the future

Predictive models are a key ingredient for resources optimization

12



I Machine learning, a toolbox for predictive models

* Find an estimator f : x - y that approximates the true value of y so that f(x) = y
Modern algorithms automatically extract patterns linking similar x to similar y

— ] Tree ®
——— 2 Trees combined
- 3 Trees combined
= 300 Trees combined

Boosted trees:
iterative ensemble
of trees

* Models are selected for their predictive accuracy on out-of-sample data

Machine learning does not focus on the form of the estimator but on predictive accuracy



I Machine learning predicts well for various complex data

Images

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, 25.
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I Machine learning predicts well for various complex data

I m ages Motif :

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification Le patient est admisle - pour des RIS cusams |
with deep convolutional neural networks. Advances in neural information

processing systems, 25. Antécédents familiaux :

Le pére du patient n'est pas | asthmatigue custom .

Text

HISTOIRE DE LA MALADIE

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &
Polosukhin, I. (2017). Attention is all you need. Advances in neural information Le patientditavoirde |2 toux cimao ros _ Elle a empiré jusqu'a
processing systems, 30. nécessiter un passage aux urgences.

A noter deux petits kystes béninsde | 1 sjze | €t = 2em size biopsiés en -
_ (établie par 'lAD & l'entrée)

adicaps ABCDOA12 adicap ©t ABCDOAL3 adicap
Conclusion

Possible = infection au coronavirus cevid . Prescription de _ pour la

fieure.

Machine learning algorithms range from large language models to regularized linear models :s



I Machine learning predicts well for various complex data

Images

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, 25.

Text

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &
Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Anna
Age=54
Gender = Female

Insurance Status = RG

Routine care data?
Sequential (100+ events)
High-dimensional (10, 000+ modalities)

Residency = Le Havre

Glucose=4.5mmol/L

|Ventilation | 'Hypotension | {Vasopressors}
Kidney failure  SOFA=12 Sp02=92%
‘TU ‘T1 ‘T2 ‘TS

Covariates X
demographics, biology, comorbidities, procedures...

What is the level of complexity required for time-varying routine care data?

16



Over-optimistic claims of machine learning for healthcare

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Dean, J. (2018).
Scalable and accurate deep learning with electronic health records. NPJ digital medicine

Hospital A Hospital B
Inpatient Mortality, AUROC(95% CI)
Deep learning 24 hours after admission 0.95(0.94-0.96) 0.93(0.92-0.94
Full feature enhanced baseline at 24 hours after admission (.93 (0.92-0.95 0.91(0.89-0.92

Full feature simple baseline at 24 hours after admission
Bascline (aEWS?) at 24 hours after admission

( )
( )
0.93(0.91-0.94)
0.85 (0.81-0.89)

(
(
0.90 (0.88-0.92)
0.86(0.83-0.88)

30-day Readmission, AUROC (95% CI)

Deep learning at discharge
Full feature enhanced baseline at discharge

0.77(0.75-0.78)
(.75 (0.73-0.76)

0.76(0.75-0.77)
(.75 (0.74-0.76)

Full feature simple baseline at discharge
Baseline (mHOSPITAL?) at discharge

0.74(0.73-0.76)
0.70 (0.68-0.72)

0.73 (0.72-0.74)
0.68 (0.67-0.69)

Length of Stay at least 7 days AUROC (95% CI)

Deep learning 24 hours after admission 0.86(0.86-0.87)  0.85(0.85-0.86)
Full feature enhanced baseline at 24 hours after admission  0.85(0.84-0.85)  0.83(0.83-0.84)
Full feature simple baseline at 24 hours after admission 0.83(0.82-0.84) 0.81(0.80-0.82)
Baseline (mLiu®) at 24 hours after admission 0.76 (0.75-0.77)  0.74(0.73-0.75)

Full feature enhance baseline =

Linear model on top of measurements
grouped by time buckets (1 day, 1 week,
1 month, 1 year, >1year)

Deep learning is not significantly
better for two tasks

Elaborate deep learning model does not outperform a simple linear model 17



How complex a predictive model for
routine care data should be?



Empirical study: planning and prevention with AP-HP data

Raw cohort from AP-HP (Paris hospitals) of 200,000 patients, two tasks:
* Long length of stay
* Prognosis

Prognosis
Description Next stay prognosis: ICD10 chapter classification
Task Multi-Label binary classification (20 classes)
Cohort Size 10,786
Prevalence From 1.3 to 55.9%
Number of cases From 139 to 6,029

What model better predict the next stay diagnosis from the data of the previous stay?

19



I Focus on ICD10 code prediction

Timeline aggregation:

 Demographics (only static variables)

* Decayed counting
 Local embeddings
e SNDS embeddings
 Transformer embeddings

Increasing complexity

. chain aggregation and estimation

~ Events (i,c,t)

Person ID | Visit ID Event Code Start
. N ICD10:type 2 2021-01-08
Laticat Ve diabetes 22:01:05
. N ; . 2021-01-08
Patient 1 | Visit 1 | Drug:Metformine 22:01-08
Patient 1 | Visit2 ) . 2021-05-08
ICD10:Heart failure| 09:15:46
. N P 2021-05-08
Patient 1 | Visit2 | Drug:Amiodarone 10:15:45
CCAM:
. . Interventional 2021-05-08
Patient 1| VISt2 | - diovasculary 11:10:43
imagery
. - ) . 2021-07-10
Patient2 | Visit3 | ICD10: sepsis 11712

—

X

-
)
_J

Aggregation functions

count
last
first
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Focus on ICD10 code prediction

Timeline aggregation:

 Demographics (only static variables)
 Decayed counting
 Local embeddings
e SNDS embeddings

Estimator:

* Linear model
e Random Forest

We benchmark a gradient of models: from simple to complex.

. chain aggregation and estimation

Events (i, c, t)

Person ID | Visit ID Event Code Start
" . ICD10:type 2 2021-01-08
[FEEE) || Rt diabetes 22:01:05
" . ; ; 2021-01-08
Patient 1 | Visit 1 | Drug:Metformine 23:01:08
Patient 1 | Visit2 ) ; 2021-05-08
ICD10:Heart failure| 09-15-46
" - P 2021-05-08
Patient 1 | Visit2 | Drug:Amiodarone 10-15:45
CCAM:
; - Interventional 2021-05-08
[FETETlY || U cardiovasculary 11:10:43
imagery
. - ) . 2021-07-10
Patient 2 | Visit 3 ICD10: sepsis 11712

X

-
)

Aggregation functions

7 count )
last
first
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Results: ICD10 code prediction

Decayed counting + Random Forest
---------------- SNDS Embeddings + Random Forest

- --==~.._~— Demographics + Random Forest

-
e

........ = Local Embeddings + Random Forest

Demographics + Logistic regression

Decayed counting + Logistic regression

Previous stay baseline Transformer-based (CEHR-BERT)

vy Cia bbb e oo XD 1

Most

SNDS Embeddings + Logistic regression COmpleX

Local Embeddings + Logistic regression mode]|

Average precision across ICD10 chapters
weighted by prevalence

[ 1 I
4000 6000 8000

|
0 2000
Number of patients in train set

1. @ Complexity does not win 22



Results: ICD10 code prediction

Average precision across ICD10 chapters
weighted by prevalence

[ I I
4000 6000 8000

|
0 2000
Number of patients in train set

2. With more data, a complex transformer architecture could be the best model

23



Results: ICD10 code prediction

Selection flowchart (train + test)

wl
P g .
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°© 055 | T TTTEEEe Notinpatient during
U o > study period
S¢c \ 2 (n=133,845)
K | n=65979 | _ _
@) r>U data quality and right
PR > censoring
Y A 4 (n=11261)
| - =
52 R [ n=54718 ]
cO « Aged below 18
oQ \ 2 I (n=14,970)
n C
25 [ 39,748 ]
0w
o= + Less than two stays
v \ 2 ” (22,234)
[@)] —
: | n=17514 |
()]
> l ! ' ' ! ' ! ' ! ' > Outliers
< 0 2000 4000 6000 8000 \ 4 (n=6.813)

Number of patients in train set ‘ n=10 701 ’ ’
I T T I I
37,080 74,160 111,240
148,320

Number of patients in raw cohort

3. We already use a lot of data: big healthcare data is not so big



A prevention task requiring big data:
Major Adverse Cardiovascular Events

Cardiovascular diseases are the leading
cause of death worldwide (>15%)

Share of total disease burden by cause (top ten), World, 2019

Cardiovascular diseases

Cancers

Neonatal disorders

Respiratory infections and TB
Other Non-communicable diseases
Musculoskeletal disorders

Mental disorders

Diabetes and kidney diseases
Respiratory diseases

Unintentional injuries

Data source: IHME, Global Burden of Disease (2019)

15.52%

OurWorldInData.org/burden-of-disease | CC BY

25



A prevention task requiring big data:
Major Adverse Cardiovascular Events

Cardiovascular diseases are the leading

cause of death worldwide (>15%).

Task
But in AP-HP data, the number of Description
cases is small from a statistical .
. . Cohort Size
learning perspective.
Prevalence

MACE

Binary classification

MACE prognosis at one year

165,948
2.6 %

Number of cases 4,315

26



A prevention task requiring big data:
Major Adverse Cardiovascular Events

Demographics

Cardiovascular diseases are the leading 'eP0)

cause of death worldwide (>15%).

Local Embeddings
(CPU)

SNDS Embeddings

But in AP-HP data, the number of (cPU)

cases is still rare from a statistical
learning perspective.

Featurizers

Decayed counting
(CPU)

Transformer-based
. . (CEHR-BERT) (GPU)
Computing resources are lacking for

complex models.

Estimator
Transformer-based (CEHR-BERT)
B Logistic regression

] Random Forest

. 10x slower
I

0 100 200 300 400 500 600

Compute time (seconds)

Computational resources are needed for prevention but hard to collocate within hospital =



@ Simple representations and estimators predict well for medium sized datasets.
Random forest outperforms a transformer with 5 ROC-AUC points

@ Data is not so big due to inclusion criteria and low prevalence.
From 2,000,000 patients to 4,316 cases

@ Benchmarking predictive models requires more computing power that what is

actually available for routine care data.
Less than a good laptop for each project

28



UK deployed the cardiovascular disease (CVD) Qrisk score, it is accurate and well calibrated.

* Itis used to recommend statins, even for moderate CVD risks and primary prevention.

UK, N.C.G.C. (2014). Lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular
disease.

29



UK deployed the cardiovascular disease (CVD) Qrisk score, it is accurate and well calibrated.
* Itis used to recommend statins, even at moderate CVD risks and primary prevention.

* However, it did not reduce the burden of cardiovascular diseases.

Eriksen, C. U., Rotar, O., Toft, U. & Jargensen, T. What is the effectiveness of systematic population-level screening programmes for reducing the burden of cardiovascular
diseases? (World Health Organization. Regional Office for Europe, 2021).

30



UK deployed the cardiovascular disease (CVD) Qrisk score, it is accurate and well calibrated.
* Itis used to recommend statins, even at moderate CVD risks and primary prevention.
* However, it did not reduce the burden of cardiovascular diseases.

* Probably because it did not target the responders and compliers.

Krska, J., du Plessis, R., & Chellaswamy, H. (2016). Implementation of NHS Health Checks in general practice: variation in delivery between practices and practitioners.
Primary health care research & development

Prediction fails when not associated to an appropriate and realistic intervention 3



I 28-dqy mortality prediction informing the administration of fluids for
sespis

- Train with post-treatment variables
- Evaluate on out-of-sample with the same variables (all stay)

1 All stay features

All stay -
Random chance

0.50 0.55 0.60 0.65 0.70 0.75 0.80
ROC AUC

Test set features




I 28-day mortality prediction informing fluid administration for sespis

- Train with post-treatment variables
- Evaluate on a actionnable dataset with only pre-treatment variables

1 All stay features

Pre-treatment only - }—I{
All stay A
Random chance

0.50 0.55 0.60 0.65 0.70 0.75 0.80
ROC AUC

Test set features

Relying on post-treatment variables (shortcut variables) hurts the performances



I 28-day mortality prediction informing fluid administration for sespis

- Train with post-treatment variables
- Evaluate on a actionnable dataset with only pre-treatment variables

B Pre-treatment features only [ All stay features

Pre-treatment only - }—I{ I-’
All stay A
Random chance

0.50 0.55 0.60 0.65 0.70 0.75 0.80
ROC AUC

Test set features

Taking into account the actionable intervention is needed to build useful algorithms



28-day mortality prediction informing fluid administration for sespis

- Train with post-treatment variables
- Evaluate on a actionnable dataset with only pre-treatment variables

I Pre-treatment features only [ All stay features

g Pre-treatment only - ‘—I{ l—’
8 Who would do that?
; A stay ’_I_‘ Answer: A lot of studies!
° Random chance
0.:.30 0.:55 O.IGO O.I65 O.I?O 0.'?'5 CI.IBO
ROC AUC

Yuan, W., Beaulieu-Jones, B. K., Yu, K. H., Lipnick, S. L., Palmer, N., Loscalzo, J., ... & Kohane, |. S. (2021). Temporal bias in case-control design: preventing reliable

predictions of the future. Nature communications, 12(1), 1107.

35

Failing to consider appropriate data damages predictive algorithms



Frame the problem Pico

Richardson, W Scott, Mark C Wilson, Jim Nishikawa, Robert S Hayward, et al. (1995). “The well-built clinical question: Popu I ation
a key to evidence-based decisions”. In: Acp j club

Anna ' ' Glucose=4.5mmol/L |

Age - 54 | Hypotension |

Gender = Female

Insurance Status = RG | Kidney failure | |:SOFA=12:| 'Sp02=92%, [Crystalloids]
' Residency = Le Havre | ‘TU ‘T'I ‘TQ ‘TS
: - >
Covariates X
demographics, biology, comorbidities, procedures...

Example: Patients with sepsis in the ICU

Define the target population with features X 36



IFrame the problem PICO

Intervention &
Control

Anna | ' Glucose=4.5mmol/L |

Age~54 Hypotension] [Vasopressors |

Gender = Female

insurance Status -RG | Kidney failure|  SOFA=12 |Sp02=92%

Residency = Le Havre ‘TO ‘T1 ’Tz ‘TS

Covariates X ‘
demographics, biology, comorbidities, procedures...

Q) Intervention A

Example: Combination of crystalloids and albumin or Crystalloids only

Q)For whome, we consider giving intervention A=1 or control A=0 37



Frame the problem PICIO

Outcome

Anna ' | Glucose=4.5mmollL |

Age — 54 Ventiiation [m} Potential outcomes

Gender = Female

insurance Status=RG | Kidney failure| [SOFA=12 |Sp02=92% [Crystalloids| — : 3
Rosidoncy = Lo Hioro ‘TU ‘_” ‘_m ‘TB A= 1 r—b‘ Inpatient mortality = Y, ‘

'I
.
A

A= GLp‘ Inpatient mortality = Y}, ‘
Outcome Y

Covariates X ‘
demographics, biology, comorbidities, procedures...

|
Q) Intervention A

Example: 28-day survival

/| To improve a clinical outcome Y 38




IAppIication with sampled data: outcomes and features

—t

Y = P[Mortality]

o 10 20
X = Charlson score

39



IAppIication with sampled data: treatment and controls

[EY
|
|
|

' Untreated outcome Yj(x)

+ Treated outcome Yi(z)

A
o R 3

-, PUNTEN
R

0 10 20
X = Charlson score

Mortality]

P

How to estimate the effect of the treatment on the outcome? 40



IA naive (and biased) solution, difference in mean

[EY
|
|
|

' Untreated outcome Yj(x)

+ Treated outcome Yi(z)

Y = P[Mortality]

0 10 20
X = Charlson score

We are not comparing apples to apples: the treated and the control differ too much

41



I Potential outcomes, arobust statistical methodology

].-0 .--l......'---...'
= === Untreated outcome Yj(x) i
"g == =1 Treated outcome Y () R J IS P
- . — —
S 0.5 4’ -
=00 D
=8 .':f
| -
Sy e e s L s R

0.0

0.0 2.5 5.0 7.0 10.0 12.5 15.0 17.5 20.0

X = Charlson score

G. W. Imbens; D. B. Rubin (2015): Causal inference in statistics, social, and biomedical sciences. Cambridge University Press

The Neyman-Rubin framework postulates two potential outcomes curves

42



I Potential outcomes, a robust statistical methodology

1.0 S e
= " Untreated outcome Y{(z) ot T(:C)
:“% == =1 Treated outcome Y (x) R R
= ‘0’ - -
“E 0.5 ¥ -~ -
=) o
Py -
I -
Sy —— Y e L e AR
0.0
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
X = Charlson score
@ Estimates
» Average Treatment Effect (ATE) T =E[Y (1) - Y(0),

* Conditional Average Treatment Effect (CATE) 7(z) = E[Y (1) - Y(0) | X = ]

The estimate of the effect is the difference between the two potential outcomes

43



I Model the outcome (G-formula) for tailored decision-making

1
= = = = Untreated outcome Yy(z)
= == = Treated outcome Yi(x)
*g == == Predicted outcomes
=
By
I
B
0

0 10 20
X = Charlson score

Machine learning is well suited for the study of subpopulations

44



I Randomized Controlled Trials (RCTs) for ATE

"—W

—

' Untreated outcome Yj(x)

+ Treated outcome Yi(z)

E'YA+O-

P[Mortality]

r'z

~

o

10 20
X = Charlson score

For the population effect, randomizing the treatment balances the populations



Between three worlds

® World 1 - Epidemiology: Carefully design the study (framing)
® World 2 — Causal Inference: Control the confounders (identification)

® World 3 — Machine Learning: Select the model (estimation)

What ingredients from these three worlds do we need? 4



How to build robust decision-making
algorithm from routine care data?



I A causal framework comparing the three sources of bias

1) Framing — study design

2) Identification — list confounders

3) Estimation

4) Vibration analysis: Compare different reasonable choices for the average treatment effect (ATE)

5) Conditional Average Effect: Go beyond population effect, study heterogeneity of the effect (CATE)

Calibrate the analysis thanks to the gold standard result before look into heterogeneity 48



I Case study with routine care data

[ Database: MIMIC-IV (opensource), 67,000
Intense Care Unit hospital stays

Qﬂ Question: In patients with sepsis, what is
the effect of albumin in combination with
crystalloids compared to crystalloids alone on
28-day mortality?

Cohort: 3,559 treated and 14,862 controls

Gold standard RCT: No effect

Caironi et al.(2014). “Albumin replacement in patients with severe sepsis or septic shock”. New
England Journal of Medicine

Initial population
(n =50920)
Female: 0,47

White: 0.68

Age at admission: 62,83

(n = 10641)
Aged over 18, ICU IOS >= 1
(n = 40279)
Female: 0.45
White: 0.67
Age at admission: 64.39
(n =19991)
Aged over 18, ICU IOS >= 1
Sepsis patients
(n = 20288)
Female: 0.45
White: 0.66
Age at admission: 67.48
(n = 1867)
Aged over 18, ICU I0S >= 1
Sepsis patients
Crystalloids in first 24h
(n =18421)

Aged over 18, ICU I0S >=1
Sepsis patients
Crystalloids in first 24h
Albumin in first 24h
(n = 3559)

Aged over 18, ICUI0OS >= 1
Sepsis patients
Crystalloids in first 24h
Crystalloids only
(n = 14862)

Treated

Control

49



Step 1 — Poor study design

If immortal time’ is misclassified into

the ‘treated’ group or excluded from
/ analysis, bias is induced
Immortal time

A
' N\
@
ﬁ - Io_.-
»
Prescription Event
Cohort entry filled

Lee, H. and D. Nunan (2020). Immortal time bias, Catalogue of Bias Collaboration. https://catalogofbias.org/biases/immortal-time-bias/

50


https://catalogofbias.org/biases/immortal-time-bias/

I Step 1 — Poor study design

Following patients during a Example: During 24 first hours of hospitalization
specific time-period
Ajntervention: med=5.8h (IR=7.4h) Outcome: 28-day mortality
TO-Inclusion: Intervention: albumin

first crystalloids|q——p!

ICU stay

<

Features observed Inclusion period = 24h

Immortal time bias is introduced because treatment and control are not aligned 51



I Step 1 — Poor study design

ATE (95% bootstrap confidence interval)

Observation period: 6h 0.01(-0.01 to 0.03) +=Albumin more efficient <> Albumin less efficient=
Observation period: 24h -0.00(-0.01 to 0.01) ——
Observation period: 72h -0.02(-0.03 to -0.01) ¢

—OI.O4 —0|.02 0.00 0.62 0.b4

ATE on 28-day mortality

Poor design can lead to erroneous conclusions 52



I Step 2 — Identification

Race () () Gender

Age at admjssion A‘\\é Mean BIOQPFESSUE lifestyle

SOCI ecnomlcal factor
elg t Heart rate Antibiotics
/ " Comorbidity

adml io Indurance, Medicgré

: femperature ~ Respiratory rate
| SAPSI| /O
@,

pO2  Urine output

Vasopressors Veritilation

()
AKI stage
'Jf-f’ 4\“ 2
—=C1)=
28 days mortality Dialysis (RRT)

Albumin + crystalloids

List confounders to answer the question with a Directed Acyclic Graph

53]



Step 2 — Compare less informed sets of confounders

ATE (95% bootstrap confidence interval) «=Albumin more efficient Albumin less efficient=
RCT Gold Standard (Caironi et al. 2014) -0.00(-0.05 to 0.05) 4
A1l confounders (24 features) -0.00(-0.01 to ©0.01) —o—
Without drugs (19 features) -0.01(-0.02 to 0.00) —1
Without measurements (13 features) -0.02(-0.04 to -0.00) —
Socio-demographics (5 features) -0.03(-0.05 to -0.02) ——
Unajusted risk difference -0.07(-0.07 to -0.07) @
v —0[.06 —OI.03 0.00 0.63
Less and less informed confounder sets ATE on 28-day mortality

An imperfect DAG including the main confounders still reduces bias 54



Step 3 - Compare different causal and statistical estimators

ATE (95% bootstrap confidence interval)

«=Albumin more efficient Albumin less efficient=
Difference in mean -0.07(-0.07 to -0.07) 4
RCT Gold Standard (Caironi et al. 2014) -0.00(-0.05 to 0.05) . 4
Propensity Score Matching
Est=Reqularized Linear Model 0.01(-0.00 to 0.04) \ 4
Est=Forests 0.67( 0.67 to 1.48) Outlier p»
Inverse Propensity Weighting
Est=Regularized Linear Model -0.03(-0.06 to 0.00) . 4
Est=Forests -0.03(-0.04 to -0.02) A 4
Outcome model (TLearner)
Est=Regularized Linear Model -0.05(-0.12 to 0.02) L 4
Est=Forests -0.01(-0.21 to 0.18) 4
Double Machine Learning
Est=Regularized Linear Model -0.06(-0.07 to -0.04) \ 4
Est=Forests -0.01(-0.02 to -0.00) . 4
Doubly Robust (AIPW)
Est=Regularized Linear Model -0.08(-0.15 to -0.02) L 4
Est=Forests -0.00(-0.01 to 0.01) > 4

~0.15 -0.10 =0.05 0.00 0.05 0.10
ATE on 28-day mortality

Random forests estimators and doubly robust methods retrieve the true effect

The choice of the causal estimator is important
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I Step 4 — Comparing the biases of all three steps

1

2 -- Confounders__

-- Design

All confounders (24 features)
Without drugs (19 features)

Without measurements (13 features)

3 -- Models ==

._Socio-demographics (5 features)

~Propensity Score Matching

Est=Regularized Linear Model
Est=Forests

Inverse Propensity Weighting
Est=Regularized Linear Model
Est=Forests

Outcome model (TLearner)
Est=Regularized Linear Model
Est=Forests

Double Machine Learning
Est=Regularized Linear Model
Est=Forests

Doubly Robust (AIPW)
Est=Regularized Linear Model
Est=Forests

Observation period:

= Observation period:

. . ATE (95% bootstrap confidence interval) «Albumin more efficient
Observation period:

Albumin less efficient=

6h 0.01(-0.01 to ©0.03) —t—
24h  -0.00(-0.01 to 0.01) —o
72h  -0.02(-0.03 to -0.01) ——
-0.00(-0.01 to 0.01) —r—
-0.01(-0.02 to 0.00) —
-0.02(-0.04 to -0.00) ——
-0.03(-0.05 to -0.02) —r—
0.01(-0.00 to 0.04) R ‘
0.67( 0.67 to 1.48) Outlier p»
-0.03(-0.06 to 0.00) ——
-0.03(-0.04 to -0.02) ——
-0.05(-0.12 to 0.02) 4
-0.01(-0.21 to 0.18) <
-0.06(-0.07 to -0.04) ——
-0.01(-0.02 to -0.00) ——
-0.08(-0.15 to -0.02) — & —
-0.00(-0.01 to ©0.01) . . — . .
-0.08 -0.04 0.00 0.04 0.08

ATE on 28-day mortality

All steps are equally important for reasonnable analytical choices. 56



IStep 5 - Beyond population effect: Heterogeneity of effect

«=Albumin more efficient Albumin less efficient=
o < 60 - | {4
[@)]
LT =60] oo T +——
8 T T -1 T T T T
% No shock - I || I | e
U L
£ ook o—JH——— ¢
&
x Male 4 ¢ ¢} H
3 Female - | C T 3 "
8 White - : 1 I | ”
Z Nonwhite{ | CT 1 00
1 -1 1

—-0.075 —-0.050 -0.025 0.000 0.025 0.050 0.075
Distribution of Individual Treatment Effect

Causal inference can suggest respondant subpopulations for tailored interventions



@ Study design, confounders and estimator choices are all equally important to
reduce bias

& Valid conclusions can be obtained even if one of this step is not perfect, but
ignoring completely one of them endangers the study validity

@ Adjusting the parameters thanks to a vibration analysis and a gold standard
trial allows to:

* catch some bhiases

» study the heterogenity of the effect
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How to select predictive models for
taillored decision making?



I Model selection: Toy example

@ Select model with small error
between the outcome and the
prediction on Out-Of-Samples

* Random Forest
. Almost perfect prediction (R?)
« €& Bad effect estimation (7-Risk)

Untreated outcome Yp(x)

> ®
= e Treated outcome Y;(x) &
© N
= — [a(x
D;_.' Metrics:
-1 = 17 %
I Estimates(%) Ir=1 &
> T =-15.8 1-risk(f) = 3.42
M ’ Tr=-4.2 R2()= 0.9
0

_

0 10 20
X = Charlson score



I Model selection: Toy example

Untreated outcome Yp(x)

S ----- Treated outcome Y;(x)
. 8 1 -
2 select model with small error S fa(x)
between the outcome and the =, i
- o ’ r=1, 1= 1M7%
prediction on Out-Of-Samples I Estimates(%) | "1~
S . T =-158 T-risk(f) =
oswad o Ti=-4.2 R2(f)= 09
0
[ ]
Rand Forest o , i TR irp——
Almost perfect prediction (R“) = ... Treated outcome Y(x)
. o . © ~
&A1 Bad effect estimation (t-Risk) I
DE.__. Metrics: |
* Linear model ’ — stimatos(z) T 7717 52
- 2 S =t 7=-158 r-risk(f) = 1.14
€1 Worse prediction (R*) - =106  Ryf)= 086
0

Good effect estimation (7-Risk)

Mmmm
0 20

X = Charlson score

An estimator can give a good estimate of the effect but predict poorly the outcome 61



I Explore different metrics for model selection

Metric

Equation

mse(7(z), 7¢(z)) = T-risk(f)

Eop)(7(z) — 7¢(x))?] Oracle: Not observable

mse(y, f(z)) = p-risk(f)

E(y,z,a)~D [( y — f(=z;a) )?| Machine learning: Mean Squared Error
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I Explore different metrics for model selection

Metric Equation

mse(7(z), 7¢(x)) = T-1isk(f) | Eppx)[(7(2) — 75(2))]

mse(y, f(2)) = prisk(f) | Bgeann [(y — f(z30) ‘]

prisky pyy E(y,z,0)~D [ (e(a:} + 1 x) y — flxa))

Rrisk® = 7-riskp, Egea~o[(( ¥ — m z)) (a—e(@) 71(x))°]




I Explore different metrics for model selection

Metric Equation

mse(7(z), 7¢(x)) = T-1isk(f) | Eppx)[(7(2) — 75(2))]

mse(y, f(2)) = prisk(f) | Bgeann [(y — f(z30) ‘]

prisky pyy E(y,z,0)~D [ (e(a:} + 1 :r,) y — flza) )2}
Rrisk® = 7-riskp, Egea~o[(( ¥ — m x)) (a—e(@) 71(x))°]

@ New theoretical result: N
Propensity weight

R-risk* (f) = /x e(x) (1-e(x)) (T($)Tf('a:))2p(a:)d:£

Oracle metric '
Bayes error (noise)

The R-risk is a weighted version of the oracle metric
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I Explore different metrics for model selection

Metric

Equation

mse(T(x), 7¢(x)) = 7-risk(f)

Eyrpx)[(T(2) = F(2))?]

mse(y, f(x)) = p-risk(f)

(
E(uwu)w'p[ y — f(z;a) ]

p-risky pyy

l—a

Y

— flw;a))?

R-risk® = 7-riskp

E(y,g_;,u)wD [ (e(a:} + 1—e :r,]

Egew~o[((y — m I))

(@ —e(2))

2

7r(z) )7

How well a metric is ranking different treatment effect models compared to the oracle t-Risk?
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I Empirical study

Simulated dataset, Caussim:
* Covariates with basis extension

* Overlap between treated and controls
* Potential outcomes Y(0) and Y(1)

Three semi-simulated datasets used in the
causal inference literature:

Real covariates, simulated treatment and
outcomes

» ACIC2016
* ACIC2018
* Twins

Simulation: D=2, 6 =0.7, seed=8

o R alie SRS RN NN R\
@ e 'S b R N IR 2 =S v e
* s atd ThaRL A AN e 2 \ \
§ °w “:;.':}‘ .\‘,j‘s‘g}‘n\t'»‘. NG 'ﬁr},\é'-}‘) ‘
[ ] v} ra A <
% L Al o T NN . ) T
IR e =
° e ] ® ‘o, = * 7 .
X, o :-’ L N
| ™

One-dimensional cuts of the response surfaces

Treatment status ® Control ® Treated
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Empirical study

Twins ACIC 2016 Caussim ACIC 2018

(N= 11 984) ™ (N=4 802) = (N=5000) ™ (N=5 000)
Strong Overlap Weak Overlap
o — g —
A + + 0 nawl— ‘. e e f—— OO
prisk $ . -
e — "
H—riskpy .,
—_— ¢+ ree} I jo w4 |
T—riskpy l
e —
U — risk A
R‘/-‘T(.‘ ] .
—ris . 'i—;:]:_._::-

—-0.50-0.25 0.00 0.25 0.50 —0.50-0.25 0.00 0.25 0.50
Relative k(£, T—Risk) compared to mean over all metrics Kendall's

The R-risk is the best metric for model selection: estimating nuisances is beneficial
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How to select predictive models for tailored decision making?

@ Selecting a model for intervention should use a different metric than for prediction
@ The R-risk is a reweighted version of the oracle metric

@ Estimation of nuisances reduces bias for many different settings
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1)

2)

3)

4)

5)

Where do we need to improve?

Framing — study design: Data quality must improve. MIMIC-IV is not perfect but good enough thanks
to open documentation, easy access and a strong link with the data collection since 20+ years.

Identification — list confounders: Medical and statistical expertise required. Bring together the

different communities with events focused on practical questions.
Matos, J., et al. MIT Critical Datathon 2023: a MIMIC-1V Derived Dataset for Pulse Oximetry Correction Models.

Estimation: Many existing methods. Text-based models have interesting potentials.
Jiang, L. Y., et al. (2023). Health system-scale language models are all-purpose prediction engines. Nature

Vibration analysis: Elaborate models require huge amounts of compute. If this is the right direction,

we need to change the collocation of compute and data.
Jiang, L. Y., et al. (2023) used one of the biggest computing cluster of the east cost.

Conditional Average Effect: Great opportunity for research. Nested trials will bring interesting insights.
Dahabreh, 1. J., & Herndn, M. A. (2019). Extending inferences from a randomized trial to a target population. European journal of
epidemiology.
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Where could causal inference methodology benefit the most?

* Not suitable for evaluating drug efficacy
Less robust than randomized control trials (maybe for drug life cycle)

* Interesting to evaluate cares with poor fundings for trials
Such as public health interventions or procedures
(national claims might be relevant)

* Improve machine learning with causal reasoning
Identify responders and design tailored care pathways
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GAThank you for your attention !

‘..........000............................................................................000...................

I. Exploring a complexity gradient in representation and predictive models for EHRs

Il. Prediction is not all we need: Causal thinking for decision making on EHRs
M. Doutreligne, T. Struja, J. Abecassis, C. Morgand, L Celi, G. Varoquaux, https://arxiv.orq/abs/2308.01605

lll. How to select predictive models for causal inference?
M. Doutreligne, G. Varoquaux, https://arxiv.orqg/abs/2302.00370
IV. Potential and challenges of Clinical Data Warehouse, a case study in France

M. Doutreligne , A. Degremont, PA. Jachiet, A. Lamer, X. Tannier
https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000298

'.........C.....................................................................................................
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https://arxiv.org/abs/2308.01605
https://arxiv.org/abs/2302.00370
https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000298

I Supplementary slides for motivation
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IWorIdwide Initiatives to collect, organize and study health data

- German Medical Informatics Initiative, 2016

- English NHS funded OpenSAFELY platform, 2020

- US NIH funded CHoRUS network, 2022
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IWorIdwide Initiatives to collect, organize and study health data

- German Medical Informatics Initiative, 2016
- English NHS funded OpenSAFELY platform, 2020
- US NIH funded CHoRUS network, 2022

- French fundings for Clinical Data Warehouse , 2023

Doutreligne, M., Degremont, A., Jachiet, P. A., Lamer, A., & Tannier, X. (2023). Good practices for
clinical data warehouse implementation: A case study in France.
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What interventions are the most effective with constrained medical resources?

RCTs are costly and study of supopulations is difficult due to small samples

”Fewer than half of the clinical guidelines for the nine most common chronic conditions
consider older patients with multiple comorbid chronic conditions.” (paren; sarton, 2010)

RCTs measure efficacy (ideal conditions) rather than effectiveness (usual practices)

”Only 6% of asthmatics would have been eligible for their own treatment RCTs ” (rravers et ai, 2007)

- A. K. Parekh; M. B. Barton (2010): “The challenge of multiple comorbidity for the US health care system”. Jama
- J. Travers, S. Marsh, M. Williams, M. Weatherall, B. Caldwell, P. Shirtcliffe, S. Aldington; R. Beasley (2007): “External validity of randomised controlled trials in

asthma: to whom do the results of the trials apply?” In: Thorax
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Other failure modes of machine learning...
eg. Exclusion of under-served populations for chest X-ray diagnosis

Automating CheXclusion With EHR + ML

FEMAILE 0-20 BLACK MEDICAID

0.6 0.6 I 0.6 0.8

Largest underdiagnosis
rates in:

Intersectional FFR
=1
&
o
-
[=]
s
=]
'

—
—
BLACK -| ——

a a
(=} M
o o
o ta
WHITE -
a =]
o 5
=] a
o Y]
i
I
I
WHITE - -

. v
o c=nd e g = wen Ww Loooo W a L Sooo e =i
- 2FeIR E=w=asy) =u == =1 s 242 eFPI0N cu = =TT =i
Sood ILinas oo e EpTa 30 22 “ggge SO0 22 Tgesc IZE%S
E =Zo<nEm Zoo i “5h® Fog i E=F= O3
= W ] ] = T
== L = =) = =] 1 = 1

-0-20
- Black
- Medicaid insurance

Subgroups FPR

0.2
) i . . i '
0.0

wmj’. E,M“"j: 80" .80 .60 .80 910' N\*ﬂinlﬂ“%uﬂ“}‘ p..':\"“ Eﬁ’m\ ,\P“—"i

gu\c-““%‘“""'“ D‘C"“\o

Seyyed-Kalantari, Zhang, Liu, McDermott, Chen, Ghassemi.
“Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations” Nature Medicine 2021.
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IYet failure modes: example in intensive care

- Predict 28-day mortality, interested in fluid rescusitation treatment
- Train with post-treatment variables
- Evaluate on a clinically useful dataset with only pre-treatment variables
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IYet failure modes: example in intensive care

- Predict 28-day mortality, interested in fluid rescusitation treatment

- Train with post-treatment variables
- Evaluate on a clinically useful dataset with only pre-treatment variables

Bl Pre-treatment features only [ All stay features I Random uniform classifier

Pre-treatment only A }—I{ I-’
All stay A ’-I—l

0.50 0.55 0.60 0.65 0.70 0.75 0.80
ROC AUC

Test set features




Slow adoption of medical devices with Al outside radiology

120 A Specialty
—— Radiology
—— Cardiovascular
100 A
—— Neurology
—— Hematology
80 1 —— Ophthalmic

—— Anesthesiology
Clinical Chemistry

Number of FDA approved devices with Al

601| — Gastroenterology/Urology
General And Plastic Surgery
40 4 — Microbiology
20 A
i —_—
0 ]

2008 2010 2012 2014 2016 2018 2020 2022
Year

Benjamens, S., Dhunnoo, P., & Meskd, B. (2020). The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database.
NPJ digital medicine, 3(1), 118.



Prediction or causation

Pubmed query

— == causality —— prognostic model OR prediction model
40000 -
72 )]
9 - 400 2
£ 35000 - £
4] (1]
S - 300 8
= 30000 - 2
o o
~ - 200 —~
- T4AN [
Y 25000 A SR v
wn / wn
= - 100 =
3 3
@ 20000 - 2
o o
- 0
1970 1980 1990 2000 2010 2020
Year

Proportion of articles by year in Pubmed returned by queries on causality or predictive modeling.
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What are the most

First, measure efficacy (ideal conditions)

built thanks to the scientific
literature to recommend ideal care trajectories

Higher degree of evidence relies on meta-
analyses of Randomized Controlled Trials (RCTs)

with ?

/\

Clinical Practice)
Guidelines

Secondary, pre-
appraised, or
filtered

Meta-Analysis
ystematic Revie
Primary

Randomized
Controlled Trial
R Prospective, tests treatment
Studies

Cohort Studies
) Prospective - exposed cohort is
Observational observed for outcome
Studies Case Control Studies
Retrospective: subjects already of interest
looking for risk factors
No desian Case Report or Case Series
g Narrative Reviews, Expert Opinions, Editorials
NP humans / Animal and Laboratory Studies \
involved

Hierarchy of evidences
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I Supplementary slides for: Clinical Data Warehouse
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I Clinical data warehouse

Technical and organizational infrastructures pooling data from several medical
information systems to homogeneous formats, for management, research or care reuses

1 - Collection

Hospital Information System

Billing codes

Drug
prescriptions

Physiology

Laboratory
measures

Nurse forms

Administrative
data

Drug
administrations

Imagery

Emergency
software

Texts

2 - Transformation

3 - Provisioning

Clinical Data Warehouse
-

Replicates of .l
—» production

| databases

NS

‘ Central Data 1
Base

2

" Management

Study
Datasets

Datamarts

B

>

Integration of sources
Deduplication
Standardization
Pseudonymization

\

" Applicative

Datamarts

N

),

4 - Usages

Cohort
creation
Vizualization
tools
Coding
environment
Other
applications
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I Timeline of CDWs implementation in french university hospitals
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Type of datain CDWs

Category of data
Administrative
Billing Codes

Biology

Texts

Drugs

Imagery

Nurse Forms
Anatomical pathology
ICU

Medical devices

Number of CDW

21
20
20
20
16

4

DO DN W =

Ratio
100 %
95 %
95 %
95 %
76 %
19 %
19 %
14 %
10 %
10 %
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Objective of studies

Total of 231 studies

Characterization

Diagnostic and
prognostic algorithms

Risk Factor

Treatment Effect

Type of study

Medical Informatics

Outcome Frequency

0% 5% 10% 15% 20% 25%
Percentage of studies (>=1%)



I Supplementary slides for: predictive algorithms for EHR
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I Machine learning estimators are selected for their predictive accuracy

Statistics Machine learning
Well-specified? Accurately predict?
k
linear regression Y (—[ muenchnaor;‘?’snm ]4_ -
Yy logistic regression T
Cox model

machine learning
estimator f(z)

Out-of-samples validation avoids overfitting

All Data

Training data Test data

L. Breiman, 2001, Statistical modeling:The two cultures (with comments and a rejoinder by the author)”. Statistical science

Machine learning is not concerned with the data generation mechanism 89



I Machine learning predicts well in multiple domains

Images

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, 25.

Text

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &
Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Routine care data?

Standardized clinical data

|

Note |’Z
|—>| Note_NLP

Results schema

Person F— Standardized health Standardized
system data metadata
_’l Observation_period | =I Location I'\ | CDM_source |
Visit_occurrence L’W | Metadata |
> Visit_detail i Care_site H Standardized
={ Condition_occurrence |l Provider vocabularies
Concept
={ Drug_exposure }‘ Standardized derived
N elements Vocabulary
» Procedure_occurrence I‘( | PR — I
N Devi = Domain
» evice_exposure l Drug_era |
={ Measurement I Dose_era | Concept_class

Concept_relationship

Relationship

/

Survey_conduct

Cohort
Cohort_definition

/

Observation

Specimen

Standardized health
economics

| Cost |

Concept_synonym

Concept_ancestor

Source_to_concept_map

Fact_relationship

I Payer_plan_period |

Drug_strength

What is the complexity of this healthcare data?

OMOP standard data model
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Machine learning literature for routine care data

Table 3 | Selected reports of machine- and deep-learning

algorithms to predict clinical outcomes and related parameters

Prediction n AUC Publication
(Reference
number)

In-hospital 216,221 0.93*0.75*0.85" Rajkomar et al.”™®

mortality, unplanned

readmission,

prolonged LOS, final
discharge diagnosis

All-cause 3-12 221,284
month mortality

Readmission 1,068
Sepsis 230938
Septic shock 16,234
Severe sepsis 203,000
Clostridium difficile 256,732
infection

093

0.78
0.67
0.83
0.85"
082+

Avati et al.*!

Shameer et al.”™®

Horng et al.'®

Henry et al.*

Culliton et al.”™

Oh et al *

Developing diseases 704,587 range Miotto et al.””

Diagnosis 18,550 096 Yang et al.*"

Dementia 76,367 091 Cleret de
Langavant et al.*-

Alzheimer's Disease 273 091 Mathotaarachchi

( + amyloid imaging) et al.*®

Maortality 26,946 0.94 Elfiky et al.*

after cancer

chemotherapy

Disease onset for 298000 range Razavian et al '™

133 conditions

Suicide 5,543 0.84 Woalsh et al.®

Delirium 18,223 0.68 Wong et al."™"

LOS, length of stay: n, number of patients (training+ validation datasets). For AUC values:

*, in-hospital mortality; +, unplanned readmission; #, prolonged LOS5; °, all patients; @,

structured + unstructured data; + +, for University of Michigan site.
Source: High-performance medicine: the convergence of human
and artificial intelligence Eric Topol, Nature Medicine Jan 2019

Machine learning predicts well a variety of medical endpoints -



Length of stay results

Description
Task

Cohort Size
Prevalence

Number of cases

Long length of stay
Long stay classification (longer
than 7 days)

Binary classification
27,053
23.1%

6,249




I Length of stay results

ROC AUC

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65

Featurizers

Local SNDS Decayed
Embeddings Embeddings counting

Logistic regression

I l I | | I
0 5000 10000 15000 20000

Number of patients in train set

Transformer-based

— Demographics === (cEHR-BERT)

\

[
0

Random Forest

| | | |
5000 10000 15000 20000
Number of patients in train set
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High number of cases matters

Number ¢
o Chapters

Average precision

0.2

1-4

4-6

6-11 11-15 15-20
ICD10 chapter prevalences (%)

20-30

50-100

Pipelines

Local Embeddings
+ Random Forest

SNDS Embeddings
+ Random Forest

Decayed counting
+ Random Forest

Transformer-based (CEHR-BERT)

Demographics
+ Random Forest
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I Static embeddings are quicker to train

Demographics Estimator
(CPU) mam Transformer-based (CEHR-BERT)
Bl Logistic regression
Local Embeddings msm Random Forest
(CPU) Sy

SNDS Embeddings
(CPU)

Featurizers

]
Decayed counting T
(CPU) —
I ——
Transformer-based
(CEHR-BERT) (GPU)

o

100 200 300 400 500 600
Compute time (seconds)
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The challenge of low prevalence
Health data is big data?

A lot of sample « losses » due to:

- Inclusion criteria

- Information system instability

- Censoring

- Rare outcomes

|

Initial Population
(n=2,101,819)

e

 EE—
A 4 \

Poor quality of the |
Information system
(n=987,581)

n=1,114,238 ]

Y

n=923,893

‘ p.

Right censoring, |

— > horizon at one year

(n=190,345)

Aged below 18
(n=275,147)

n=343,898 } q

~

Less than two stays

(304,848)
/

|

. ™y
Other exclusion

criteria
(n=177,968)

S

with 4,360 cases

v .
n=165.930 }
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Engineering focus: chain patient representation and predictive model

Events (i, ¢, t) X

Ty
Person ID | Visit ID Event Code Start &
) - ICD10:type 2 2021-01-08
FETERY || W=l diabetes 22:01:05 &
) - . ) 2021-01-08
Patient 1 | Visit 1 | Drug:Metformine 53-01:08
Patient1 | Visit2 , ) 2021-05-08
ICD10:Heart failure| TR —
_ 3 . 2021.05.08 Aggregation functions
Patient 1 | Visit2 | Drug:Amiodarone AE.
10:15:45
'd I
e count
) - Interventional 2021-05-08
FETETIY || Ul cardiovasculary 11:10:43 IaSt
magery first
) ) _ ) 2021-07-10 |
Patient2 | Visit3 | 1CD10: sepsis 14712 o y




IComputing patient features : count and decay

Patient features without time decay

c3 c1 Cc2 c3 T0 ¢4
Patient 1
event
sequence ——
Patient features with time decay 9
Aty
P At €<—>»
C3 El C2 C3 ’TO C4 C(].,Cl)
Patient 1
event C(1,¢2)
sequence | 5
< > C(1,¢3)
At
3 A;—)

C(l,c;) = 1
C(]_,Cz) =1
G(].,Cg) =2
C(lycq) = 0
_ _ At
= exp 3
_At
= exp 3
t3
= exp(—T) —I—exp(—

0.02 | 0.1 0.801 0

0 02 0.1 0.001

N patients
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IComputing patient features : adding the embeddings

Obtain patient features by collapsing the

vocabulary dimension:

X =[C-®,Clecay - P

N patients -

-

Sparse count matrix C

V concept codes
A
0 0 2 0 4
0|1 0|0 |0
2 0 0 2 0
00| 2| 0|0
1 0 0 0 0
0|1 1 4 | 1
0 0 0 1 0

V concept codes

.

D dimensions

0.251

0.124

0.871

0635

0551

0.487

0.251

01647

0.152

0.530

0251

0.693

0.7

0336

0.714

Embeddings ¢
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I Inspirated from word2vec

Distributional hypothesis (Haris, 1954): Two words have close meaning iif
they appear in similar contexts.

The queen sits on the throne and discusses with the king the problems of thei%goﬁ
\ — J
|

window = 2 x 5 words

Proximity in the embedding space is forced by proximity in the corpus.
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I Event2vec, a package to compute concept embeddings

Load events

person_id start event source concept id

1] 1 2018-11-08 19:24:15 CIM10:N182

4 1 2018-12-20 19:24:15 CCAM:JVIBOL

@ A python package available on pypi s 2 19930126 072242 P
12 3 2009-04-25 10:14:21 CIM10:N182

9 2 2020-01-26 07:22:42 CIM10:E12

- A pyspark version for big data (>500m rows) _ :
Build embeddings

lpha = ©.75

- polars for medium sized datasets (up to 100m rows)

a
k
d

n n4

a
1
3

- Sklearn compatible transformers embeddings = event2vec(

events=events,
output_dir=output_dir,
colname_concept="event_source_concept_id",

- Quick start and step by step guides: B GG
. . . window_radius_1in_days=38,
https://straymat.gitlab.io/event2vec/tutorials/ 0 tuto ev é=d, o
smoothing_factor=a EN
ent2vec.html o, ’
backend="pandas",
)
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https://straymat.gitlab.io/event2vec/tutorials/_0_tuto_event2vec.html
https://straymat.gitlab.io/event2vec/tutorials/_0_tuto_event2vec.html

Qualitative results: https:/straymat.qgitlab.io/event2vec/visualizations.html

Vocabulary
* ANABIO
® ATC
® CCAM
e CIM10

Vocabulary
® atc7

® ccam

® cim10

® nabm

", Traumatology

APIO_IP ) : - - - - SNOD Szu “ = = o
(200K random patients) (3M random patients)
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https://straymat.gitlab.io/event2vec/visualizations.html

Nearest neighboors

source_concept_code =

top_k concepts = get closest nn(
source_concept_code=source_concept_code,
embedding dict=snds_embeddings,
concept_labels=concept labels,

k=k,

concept_code
cim10:150
cim10:1080
cim10:1442
atc7:DO5BB02

ccam:YYYY 105

cim10:1071
atc7:CO1BDO1
cim10:1341

ccam:DERPO03

ccam:DELFO07

atc7:CO1AA05

ccam:DEQP008

cim10:1453
cim10:1253

ccam:DELFO05

cim10:1340

concept name similarity

Insuffisance cardiaque

Atteintes des valvules mitrale et aortique (rhumatismales)
Bloc auriculoventriculaire complet

Acitretin

Imagerie pour acte de radiologie interventionnelle ou de cardiologie
interventionnelle niveau 1, réalisée en salle d'imagerie

Insuffisance tricuspidienne (rhumatismale)
Amiodarone
Prolapsus (de la valvule) mitral(e)

Choc électrique cardiaque transcutané [cardioversion externe], en dehors de
I'urgence

Implantation souscutanée d'un stimulateur cardiaque définitif, avec pose d'une
sonde intraatriale ou intraventriculaire droite par voie veineuse transcutanée

Digoxin
Restitution tridimensionnelle informatisée de I'activité électrophysiologique

cardiaque [cartographie cardiaque tridimensionnelle], au cours d'une intervention
sur le systéme cardionecteur

Bloc trifasciculaire
Anévrisme du coeur

Implantation souscutanée d'un stimulateur cardiaque définitif, avec pose d'une
sonde intraatriale et d'une sonde intraventriculaire droites par voie veineuse
transcutanée

Insuffisance (de la valvule) mitrale (non rhumatismale)

1.000
0.608
0.595
0.582

0.577

0.575
0.570
0.570

0.567

0.564




I Supplementary slides for: Decision making with EHR
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Failures because of shortcut features

Benign nevi
Nevus 4 Nevus 7 g

[A] unmarked [c] Marked [€] unmarked [6] Marked

Prediction: malignent melanoma
Intervention: excision of nevi

Original Input Image

Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). “Association between surgical skin markings in
dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition”. In: JAMA dermatology
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These failures occur because of shortcut features

Benign nevi
Nevus 4 NevAus7 g

EI Unmarked E] Marked E Unmarked IE] Marked

Prediction: malignent melanoma
Intervention: excision of nevi
Shortcut: surgical marks

Original Input Image

Unmarked E] Marked E] Unmarked

Heat Map
A

Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). “Association between surgical skin markings in
dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition”. In: JAMA dermatology
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Predictive models fail because of shortcut features

Prediction: malignent melanoma

Intervention: excision of nevi
Shortcut: surgical marks

Unmarked lesions

1.0+ r —
08
L
S
A
. > |
Predicted % 06
score 2
; 0.4
=
o
=
s
2 0.2
J
< S =
Benign In Situ
Nevi Melanomas

A

Invasive
Melanomas

0.8+

o
FS

Melanoma Probability Score

—

Benign
Nevi

Marked lesions

In Situ Invasive
Melanomas  Melanomas

True labels

Melanoma Probability Score

08+

0.6+

0.4+

0.2+

04

Benign
Nevi

Cropped images

In Situ
Melanomas

Invasive
Melanomas

Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). “Association between surgical skin markings in dermoscopic
images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition”. JAMA dermatology
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I 2 study design — Frame the question to avoid biases
Example (Mimic database usecase)

#4448 Target Population with features X Patients with sepsis in the ICU
fiiid
@L For whome, we consider giving Combination of crystalloids and albumin

® the treament A=1 or the control A=0 or Crystalloids only

@ To improve a clinical outcome Y 28-day survival
Following patients during a During 24 first hours of hospitalization
specific time-period

‘? Contrast the intervention against the control on the outcome in the target population
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https://www.has-sante.fr/jcms/c_2676946/fr/prise-en-charge-initiale-de-l-accident-vasculaire-cerebral

IFormal problem: Is an intervention effective?

LI Quantify the effect of a (binary) intervention A on an outcome Y

Example:

For patients with sepsis in the ICU requiring fluid rescuscitation —~ P
. o . . A — Y

Should I give a combination of crystalloids and albumin N N4

Or crystalloids only

To improve 28-day survival Causal graph
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I A Causal Framework: Study design

1 - Framing

Popalation Emulate the ideal trial that you would conduct if you could recruit patients
Type 2 diabetes Hernan, 2021.
) Intervention

A =1, second
line antidiabetics

) Comparator
A=0, metformin

Qutcome
Y =HbATc

= Time

.

Hernan, Miguel A (2021). “Methods of public health research—strengthening causal inference from observational data”. In: New England Journal of Medicine

110



I P Causal framework in real life: Identification

|'/

Population
Type 2 diabetes

) Intervention
A =1, second
line antidiabetics

® Comparator
A=0, metformin

Outcome
Y =HbATc

X Time

e

1- Framiﬁng 2 Identificatiqn

Confounders

Estimand
E[Y(1)]
—E[Y(0)]

Look for
other sources
of bias

List necessary information to answer the causal question

VanderWeele, Tyler J (2019). “Principles of confounder selection”. In: European journal of epidemiology
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I ldentification - List necessary information to answer the causal question

Categorize variables in the data base

g g B

A: Treatment Y: Outcome e
y X S P /I% X: Confounder C: Collider
Py A 'Y ) IV: Instrumental variable
/ \ /— M: Mediator E: Effect modifier @
A—Y) A—Y J..iA/rH\\M/,H(Y}' ‘A ~Y
Confounder Collider Instrumental variable  Mediator Effect modifier
(Represented following Attia
et al., 2022)

Focus on confounding
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2 Causal Framework: Estimation

!'/

Population
Type 2 diabetes

) Intervention
A =1, second
line antidiabetics

® Comparator
A=0, metformin

Outcome
Y =HbATc

X Time

-

1- Framiﬂng 2__- Identificatic_-_n

Confounders

Estimand
E[Y(1)]
—E[Y(0)]

Look for
other sources
of bias

3 - Estimation

/?eature extraction

Causal estimator

Nuisance estimatﬁ_

s

{

.

L
Aggregation
functions

in
max
first
last

»

~

\

4 I

G-formula
u(a; z) = E[Y|a; z]
IPW

e(z) =P[A = 1|z]

Double-robust

(e(z), u(a; z)

N J

s

L)

Linear ® ot

Regression| ° %" o
-]

N\

Trees
Neural Bl
Networks 5|

Select appropriate estimators

Wager, Stefan (2020). Stats 361: Causal inference.
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I 2 Causal Framework: Vibration analysis

Population
Type 2 diabetes

) Intervention
A =1, second
line antidiabetics

Q) Comparator
A=0, metformin

Qutcome
Y =HbATc

X Time

.

Patel, Burford, and loannidis (2015). “Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations”.

N
\

1- Fram[_ng 2_- Identificatic_m

Confounders

Estimand
E[Y(1)]
—E[Y(0)]

Look for
other sources
of bias

Journal of clinical epidemiology

Feature extraction

3 - Estimation

Causal estimator

Nuisance estimator-.

[

{

\

-

N N N
T G-formula e 7
w(a;z) = E[Y|a; z]| |Regression °: «
IPW
J e(z) =P[A = 1|z]
Aggregation Trees
functions
( i Double-robust
max
first (e(m)= F’(a; :C)) Neural -
£z, Networks ~ 5|
/L AN ,/

i

4 - Vibration

Analysis

f

Question
analyses
choices

;

_I_._

_F
_I_._

—_—
-1 ¢ -0
N/

~

A 4
Assess the robustness of the hypotheses
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I P Causal Framework: Treatment heterogeneity

4 - Vibration
1-Framing 2 - ldentification 3 - Estimation Analysis 5 -CATE
e N 0O\ ™ Gl - - - LN e N 4 D
Confounders | /f=eature extraction Causal estimator Nuisance estlmator\__
[ N\ 7 N /7 N Question Estimate
o LRI treatment effect
Population £ e Linear o o/ choices in subgroups
Type 2 diabetes u(a;z) = E[Y|a; z]| |Regression °: >
®) Intervention o o +
A =1, second IPW _l_._
line antidiabetics Estimand e(z) = P[A = 1|z]
A fi :
D I E[Y(1)] functions Trees +
' —E[Y(0)] (" min | Double-robust i
Outcome max _'_L_E_'T
Y = HbATc L ook for = (e(x), w(a;2)) | | Neural ) o [\ Y
2 Time other sources \ S as HTIRE |
~ ofbias Lo /) /
\x_ \ /N ,‘/ AN /N 4

Compute treatment effects on subpopulations

Robertson, Sarah E, Andrew Leith, Christopher H Schmid, and Issa J Dahabreh (2021). “Assessing heterogeneity of treatment effects in observational studies”. American
Journal of Epidemiology
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I Treatment heterogeneity — Compute treatment effects on subpopulations

Does the effect vary in different subpopulations?
@ If yes, there is room for personalized treatment !

Strong effect
S e —— S — Y W P ——
How to do that ? = = = =+ Untreated outcome Yj(x)
- Take the most reliable ~ = 075 ="' Treated outcome ¥ (z)
. T
estimate from S 0.50 No effect &0
previous steps oy g

e

Il 0.25 ‘
- Regress the individual 0.00 ‘ m

estimations against
targeted sources
heterogeneity

Y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 1
X = Charlson score

20.0

=~
ot
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What source of bias dominates ? A practical example

Many possible estimation choices

* Feature aggregations

- Last value before the start of the follow-up period,

- First observed value,

- Both the first and last values as concatenated features.

/] Causal estimators
Inverse Propensity Weighting (IPW), outcome modeling (G-formula) with T-Learner,
Augmented Inverse Propensity Weighting (AIPW) and Double Machine Learning (DML)

£ Outcome and treatment estimators: regularized logistic regression and random forest
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I A study design — focus on the time component

Following patients during a Eg. During 24 first hours of hospitalization
specific time-period
Ajntervention: med=5.8h (IR=7.4h) Outcome: 28-day mortality
TO-Inclusion: Intervention: albumin

first crystalloids|q——p!

ICU stay .
< >

Features observed Inclusion period = 24h
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I A study design — focus on the time component

Following patients during a Eg. During 72 first hours of hospitalization
specific time-period
Ajptervention: Med=8.8h (IR=18h) Outcome: 28-day mortality
TO-Inclusion: Intervention: albumin
first crystalloids|g >

ICU stay
< >

Features observed Inclusion period = 72h
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Immortal time bias introduced with different inclusion times

ATE (95% bootstrap confidence interval)

Observation period: 6h 0.01(-0.01 to 0.03) =Albumin more efficient & Albumin less efficient=
Observation period: 24h -0.00(-0.01 to 06.01) —
Observation period: 72h -0.02(-0.03 to -0.01) ——

-OI.04 —OI.{'JZ 0.00 D.IUZ O.IG4

ATE on 28-day mortality

Figure 8: Detecting immortal time bias — Increasing the observation period increases the temporal blank period between inclusion
and treatment initialization, associating thus patients surviving longer with treatment: Immortal Time Bias. A longer observation
period (72h) artificially favors the efficacy of Albumin. The estimator is a doubly robust learner (AIPW) with random forests for
nuisances. This result is consistent across estimators as shown in Appendix J. The green diamonds depict the mean effect and the bar
are the 95% confidence intervals obtained by 30 bootstrap repetitions.

Another study project in nephrology where ITB was harder to control for: https://soda.gitlabpages.inria.fr/deepacau/#intervention-comparator
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https://soda.gitlabpages.inria.fr/deepacau/#intervention-comparator

I Immortal time bias introduced with different inclusion times

TO-Inclusion:
first crystalloids

Blank period

&inten'entiun

(med=6.7h, IR=8.7h)

<

g

Outcome: 28-day mortality

Intervention: albumin
A pmortality (med=40d, IR=250d)

<

Hosp stay

<+r<4

Aintime | Observation period
(med=1.6h, IR=5h)

A1cU Log (med=90.5h, IR=130h)
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ISeIection flowchart for the usecase

Initial populaticn

{n = 50920)
Fernale: 0.47
White: 0.68
Age at admission: 62,83
in = 10641)
Aged over 18, ICU 105 == 1
{n=40279)
Fermale: 0.45
White: 0.67
Age at admission: 64.39
in = 19991}
Aged over 18, ICU 105 == 1
Sepsis patients
{n = 20288)
Fernale: 0.45
White: 0.66
Age at admission: 67.48
(n = 1867)
Aged over 18, ICU 105 == 1
Sepsis patients
Crystalloids in first 24h
in = 18421)

Aged over 18, ICU 105 == 1
Sepsis patients
Crystalloids in first 24h
Albumin in first 24h
{n = 3559)

Aged over 18, ICU 105 == 1
Sepsis patients
Crystalloids in first 24h
Crystalloids only
{n = 14862)

Treated

Control

Figure 12: Selection flowchart on MIMIC-IV for the emulated trial.
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Different choices of aggregation does not change the result

ATE [05% kootstrap cenfidenca intareal|

Variable

bDifferance in mean
RCT Gole Standard (Cairand et al. 2014)

Inverse Propensity Weighting
Apg=|'median |, Est=Regularized Linear
fpg=|'last |, Est-Repularized Linear
Apg=|'first'], Est=Regqularized Linsar
Agg=]"Tirst", last', "median |, Est=Regularized Linear
Agg=| ' median |, Est=Farasts
Apg=|‘'last |, Est=Farests
Agg=|'first'], Est=Forests
Agg=|'first’, “last', 'median ], Est=Faorests
Double Machine Learning
Aog=|'median |, Est=Regularized Linear
Agg=|'last |, Est=Regularized Linear
Bpgg=|'first'], Est=Regularized Linear
Apgg=|'first’', ‘last', 'median |, Est-Repularized Linear
Rpg=|'median |, Est=Farests
Agg=|"last |, Est=Faorests
Agg=]'first'], Est=Forests
fpg=|'first', "last', 'median |, Est=Farasts
Doubly Robust [AIPW)
fgg=|"'median |, Est=Regularised Linear
Apgg=['last |, Est-Repularized Linear
Aog=|'first'], Est=Hegularized Lin=ar
Agg=|"first*, "last’, "median |, Est=Regularized Linear
Agg=]'median |, Est=Forests
Agg=|'last |, Est-Forests
Agg=|'first'], Est=Forests
Agg=|"tirst", “last', ‘median |, Est=Farests
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Figure 16: Vibration analysis dedicated to the aggregation choices.
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The choices of aggregation only marginally modify the results.
When assessed with Normalized Total Variation, the overlap assumption is respected for all our choices of aggregation. The green
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IPracticaI Implementations issues

Packages Simple Conlidence | sklearn sklearn Propensity | Doubly Robust TMLE Honest splitting
8 installation Intervals | estimator | pipeline estimators estimators estimator | (cross validation)

dowhy v v v v v X X X

. Yes excepl Only [or doubly
EconML | » v v for imputers X v X robust estimators
zEpid v v X X v v v Only for TMLE
o Only for doubly
causalml | X d v v v v v robust estimators

Table 6: Selection criteria for causal python packages
Foundings:

Counterfactual prediction lacks off-the-shelf cross-fitting estimators
Good practices for imputation not implemented in EconML
Bootstrap may not yield the more efficient confidence intervals and
parametric confidence intervals are rarely implemented
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ICausaI assumptions: 1 — Ignorability / Unconfoudneness

Consider all confounders capturing differences between treated and control
populations impacting the outcome

1Y(0), Y(1)) AL AIX

Conditionally on features,
treatment allocation is as random

A\ Not verifiable with data only: Medical expertise needed

Legally, medical records should contain all information considered for interventions
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I Causal assumptions: 2 — Positivity / Overlap

Treated and controls should be close enough ie. randomness in treatment allocation

dn>0,st,n<ex)<1—-—n VYxelX

1.00
2
= 0.75
E
= 0.50
A
| 0.25
B

0.00

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
X = Charlson score
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I Other (weaker) assumptions
3 - Consistancy
For a patient, the outcome corresponds to the potential outcome of its treatment.
Y; = A;Yi(1) + (1 — Ay)Yi(0)
All intervention are identical between individuals and there is no interactions.

4 — Identically and independtly distributed observations
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I @ Causal estimators

* IPW: 1 Z ;Y n (1 — a;)y;

e G-formula: . 1 —
fa(f) =~ fl@i1) = f(2:,0)
T =1
* Augmented Inverse Propensity Weighting :
7 N , Ai — & (X;) A
T, - = ) : - _
AIPW - Z (,u(l} (Xi) — B0y (Xi) + 0 (X)) e(X) (Y: — figay (Xz)))

1=1
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I @ Heterogeneous Treatment Effect

* Double ML, built-in:

1 T
7(-) = argmin_ {— ((yi — m(z:)) — (a; — e(z3))
-

(/B
=1

~
po—
~
=~ A
[~
~
o
S—
N—
b

* Double Robust, final regression:

~—

arg min E.[(Y —0(Xcare) - A)?]

WhereY =Y — (X, A)and A = A — é(X)
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Other emulated trials which could be studied in Mimic

. s - Number of | Criteria Target RCT or

Trial name Criteria description patients status Implemented meta-analysis reference

Septic shock defined by the sepsis-3 criteria, .
Fludrocortisone first stay, over 18, not deceased during first 24 hours of ICU 28,763 target population | / (Yamamoto et al., 202()
combination for sepsis | Hydrocortisone administred and sepsis 1,855 control "4

Both corticoides administered and sepsis 153 inlervention v

Over 18, hypoxemia 4 h betore planed cxtubation .
High flow (Pa02, FiO2) < 300 mmHg), and cither High Flow 801 target population | X Efl'zg]h;“a‘j: ;_]]ari‘c’;i),[ Robins, 2016)
oxygen therapy Nasal Cannula (HFNC) or Non Invasive Ventilation (NIV) B o
for hypoxcmia Eligible hypoxemia and HFNC 358 intervention X

Eligible hypoxemia and NIV 443 control X

Mpyuocardial infarction without hypoxcmia at admission:

- Myocardial infarction defined with ICD9-10 codes,

first stay, over 18, not deceased during first 24 hours of ICU . (Hofmann et al., 2017),
Routine oxygen for 3.379 target population | / (Stewart et al., 2021)
myocardial infarction | - Hypoxemia during first 2 hours defined as either

(Pa02/Fi02) leqg 300mmHg OR SO2 leq 90

OR Sp02 < 90

Myocardial infarction without hypoxemia at admission AND . .

Supplemental Oxygen OR Non Invasive Vent 1,901 intervention v

Myocardial infarction without hypoxemia at admission AND

no ventilation of any kind during first 12 hours 605 control v

Acute Respiratory Distress Syndrome (ARDS) during
Prone positionin the first 12 hours defined as (Pa02,Fi02) leg 300mmHg, 11506 trial population v (Munshi et al., 2017)
for ARPJZ(:S 2 first stay, over 18, not deceased during 24 hours of ICU

Prone positioning and ARDS 547 intervention 4

Supline position and no prone position 10,904 control v/

ARDS during the first 12 hours defined as (Papazian et al., 2010)

(Pa02,FiO2) leq 300mmHg, first stay, 11,506 trial population v (H(Fel‘a] 20@6) '
NMBA for ARDS over 18, not deceased during 24 hours of ICU v

Nn_:uTo_mu.scula_{r bluck.mg agent (NBMA) as cisatracurium 700 intervention P

injections during the stay.

No NBMA during the stay 10,797 control v

Septic shock defined by the sepsis-3 criteria, (Caironi et al., 2014),

first stay, over 18, not deceased during first 24 hours 18,421 trial population v (B. Lietal., 2020),
Albumin for sepsis of ICU, having crystalloids (Tseng et al., 2020)

Sepsis-3 and crystalloids during first 24h, no albumin 14,862 control 4

Sepsis-3 and combination of crystalloids followed by 3.550 intervention v

albumin during first 24h
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Lessons learned

- Study design clarifies the question and helps to avoid biases

- Choice of the estimator affect the results, choice of aggregation is less important

- Vibration analysis important to catch some bias

- Event imperfect causal graph reduce bias

- Vibration analysis require software skills (measurement tables is 300M rows in MIMIC)

https://github.com/soda-inria/causal ehr mimic/tree/main/caumim
- No python packages for estimation with all best statistical practices and estimators
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https://github.com/soda-inria/causal_ehr_mimic/tree/main/caumim

I Supplementary slides for: How to select causal models?
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Empirical study: results

How well a metric rank models compared to the oracle t-Risk, measured with Kendall <

(number of concordant pairs ) — (number of discordant pairs)

K= —
(number of pairs)

Remove inter-dataset variation by substracting mean Kendall over all metrics

K (¢, T—risk) — meany (K (¢, T—risk))
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I Empirical study: estimation procedure

] Full data
Trainset - Testset ——
Training
[ 1 fy | fa|fs |-
Candidat
Hyperparam ;nﬁ; ates E"::" 131(1;2)|f1(1;3)
f [ L (Fzy =
c search Nuisances 20112 2)f72(73)

Evaluation of candid
Best nuisances va uatu_atl;:o Ctalj idates

hyperparameters with metrics
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I Empirical study: results

Nuisances can be estimated on the same data as outcome model

Training procedure I Shared sets [ Separated sets

Strong Overlap Weak Overlap

Twins M HOH N o4
(N=11984) +ww. : ;
AC'C 2016 + + T T T X T T Y + + HOoHHILe e 4 . +
(N=4 802) B e e wee e - AR T T TR

Caussim

—-0.6 -0.4 -0.2 0.0 0.2 —-0.6 -04 -0.2 0.0 0.2

Relative Kendall to semi-oracle R’—?SP
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I Empirical study: results

Stacked models are good overall estimators of nuisances

Nuisance models BB Linear [ Stacked
Strong Overlap Weak Overlap

Py t— - — L

(N: 11 984) (X1 OO ‘e

rWinS downsamp|ed R T u)ﬂ:l e b e $
(N=4 794) e He00e " IR R

ACIC 2016 ++omms ﬂ_' b e ?

(N=4 802) ¢ * L LR U L U LR L] * + LU LR He o

Caussim oo meel q_'_ oo e | ﬁ_‘
(N=5 000) ¢ o ) ' X . S Lo 00 ¢t N - "

-0.6 -04 -0.2 0.0 0.2 -0.6 -04 -0.2 0.0 0.2

Relative Kendall to semi-oracle R—risk
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Empirical study: Model selection is harder for low population overlap

Bl Weak Overlap B Medium Overlap [ Strong Overlap

Dataset = Twins Dataset = ACIC 2016
(N= 11 984) (N=4 802)

w | | . TR RN T T
e ——
R = risk b + R b b e
. ey R
TuEs r e e “w o
Am
R — riSk* ' Iy ' e e R
xurs IR e ke

Dataset = Caussim Dataset = ACIC 2018
(N=5 000) (N=5 000)

/—-.--"' |
o %ﬁ\—m_

/"‘-u.,*_
R —risk #‘

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Kendall rank correlation Kendall rank correlation
K(Z, T—Risk) K(¢, T—Risk)
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