Representations and inference from time-varying routine care data

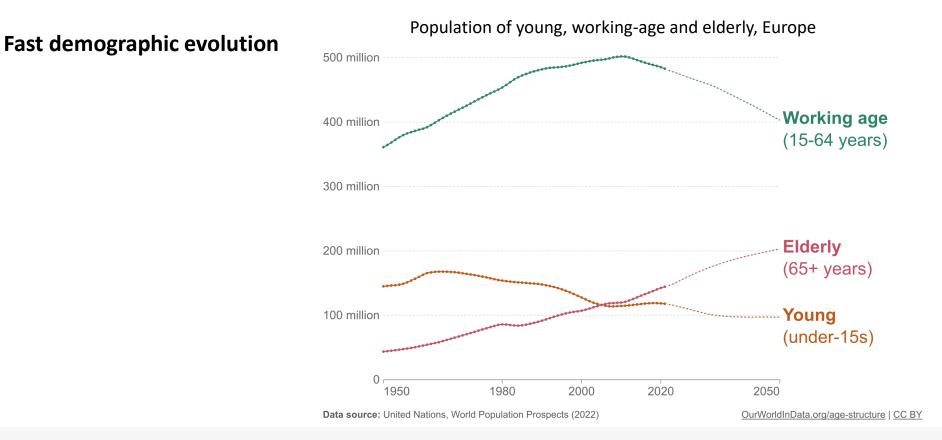
Matthieu Doutreligne

Inria SODA, Haute Autorité de Santé

0

Direction of the thesis: Gaël Varoquaux, INRIA SODA <u>Co-supervision</u> Claire Morgand, ARS IDF

Important considerations in public health

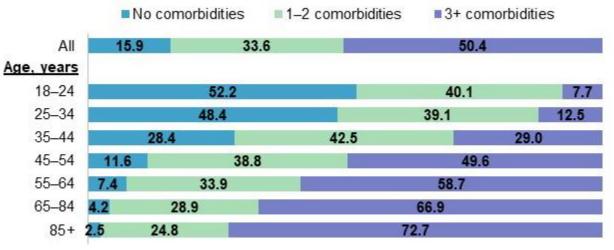


Important considerations in public health

Fast demographic evolution

Consequences:

• Increasing comorbidities



Comorbidities Associated With Adult Inpatient Stays, 2019, Agency for Healthcare Research and Quality

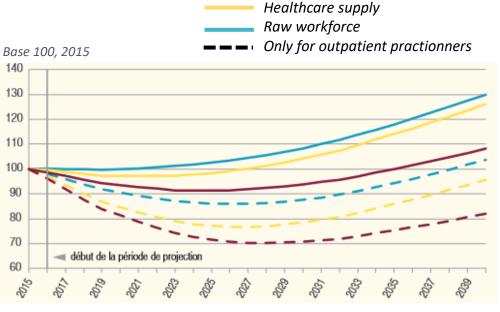
Important considerations in public health

Fast demographic evolution

Consequences:

- Increasing comorbidities
- Scarcity of medical practionners
- Constrained financial resources

Increasing number of available treatments to choose among



Projection for France of:

Standardized healthcare supply

Les médecins d'ici à 2040 : une population plus jeune, plus féminisée et plus souvent salariée, Etudes et Résultats, Drees, Ministère de la Santé et de la Prévention, mai 2017

Population ageing puts a lot of constraint on modern healthcare systems

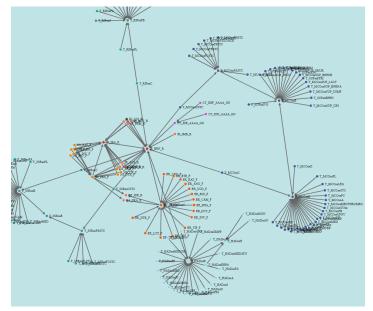
These constraints call for resource optimization

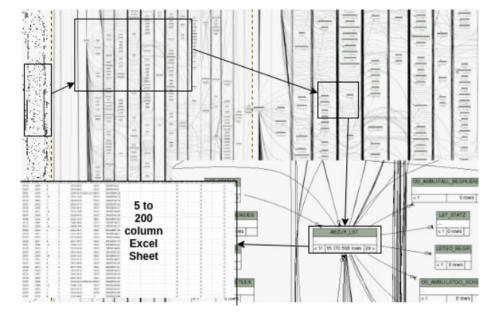
Healthcare data can contribute thanks to better:

- Planning
- Prevention
- Choice of effective interventions adapted to each patient

Healthcare data can help to optimize resource allocation

Routine healthcare databases (Real World Data)





Claims:

ex. French National Claims, <u>SNDS</u>, 68M patients Mostly administrative variables eg. billing codes, prescriptions Clinical Health Records (CHRs): ex. Paris hospitals (AP-HP), 10M patients Detailed clinical variables

Large routine care databases are increasingly available

Characteristics of routine care data

Benefits for public health

- Routine care
- Good coverage of the population
- Cheap data collection

Characteristics of routine care data

Benefits for public health

Routine care

ullet

P Drawbacks

- Confounding (non random interventions)
- Good coverage of the population
 Complexity
- Cheap data collection
 Heterogeneous quality

• High dimensional data

The characteristics of routine care data require dedicated methods and questions

How can routine care data contribute to better resource allocation?

Contributions

I. Exploring a complexity gradient in representation and predictive models for EHRs ongoing work

II. Prediction is not all we need: Causal thinking for decision making on EHRs submitted to Lancet Digital Health

III. How to select predictive models for causal inference? *Rework in-progress for submission to Jamia*

IV. Potential and challenges of Clinical Data Warehouse, a case study in France published in PLOS Digital Health

Examples of resource optimization

- Prevent acute events by considering risk reduction procedures
- Allocate human resources in priority to potentially long stays
- Avoid early hospital discharges to diminish preventable readmission

Examples of resource optimization

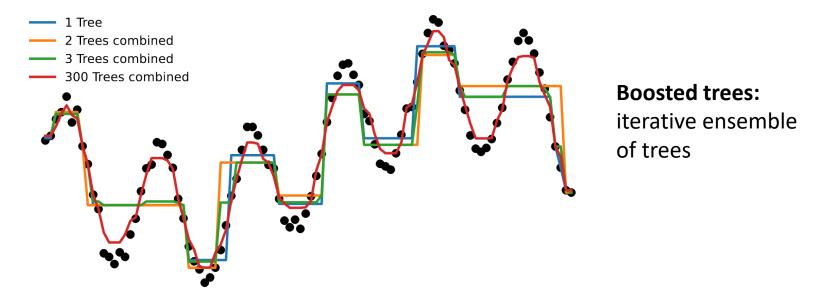
- **Prevent** acute events by considering risk reduction procedures
- Allocate human resources in priority to **potentially** long stays
- Avoid early hospital discharges to diminish preventable readmission

We need to better understand the future

Predictive models are a key ingredient for resources optimization

Machine learning, a toolbox for predictive models

Find an estimator f : x → y that approximates the true value of y so that f(x) ≈ y
 Modern algorithms automatically extract patterns linking similar x to similar y



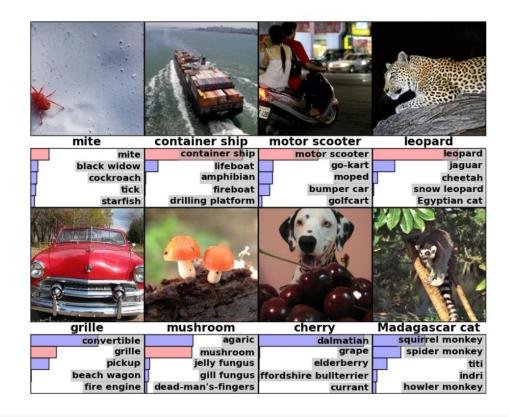
• Models are selected for their predictive accuracy on out-of-sample data

Machine learning does not focus on the form of the estimator but on predictive accuracy

Machine learning predicts well for various complex data

Images

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.



Machine learning predicts well for various complex data

Images

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.

Text

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Motif :				
Le patient est admis le 29 août date pour des difficultés respiratoires custom .				
Antécédents familiaux :				
Le père du patient n'est pas asthmatique custom .				
HISTOIRE DE LA MALADIE				
Le patient dit avoir de la toux cim10 R05 depuis trois jours date . Elle a empiré jusqu'à				
nécessiter un passage aux urgences.				
A noter deux petits kystes bénins de 1 size et 2cm size biopsiés en 2005 date .				
Priorité: 2 emergency_priority (établie par l'IAO à l'entrée)				
adicaps ABCD0A12 adicap et ABCD0A13 adicap				
Conclusion				
Possible infection au coronavirus covid . Prescription de paracétomol drug NO2BEO1 pour la				
fièvre.				

Machine learning algorithms range from large language models to regularized linear models 15

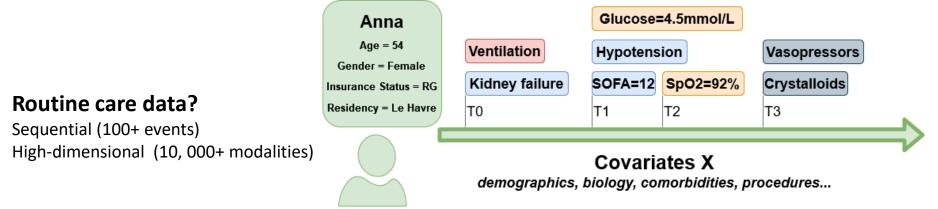
Machine learning predicts well for various complex data

Images

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.

Text

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.



What is the level of complexity required for time-varying routine care data?

Over-optimistic claims of machine learning for healthcare

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. *NPJ digital medicine*

	Hospital A	Hospital B
Inpatient Mortality, AUROC ¹ (95% CI)		
Deep learning 24 hours after admission	0.95 (0.94-0.96)	0.93(0.92-0.94)
Full feature enhanced baseline at 24 hours after admission	0.93(0.92-0.95)	0.91(0.89-0.92)
Full feature simple baseline at 24 hours after admission	0.93(0.91 - 0.94)	0.90(0.88-0.92)
Baseline (aEWS ²) at 24 hours after admission	0.85(0.81-0.89)	0.86(0.83-0.88)
30-day Readmission, AUROC (95% CI)		
Deep learning at discharge	0.77(0.75-0.78)	0.76 (0.75-0.77)
Full feature enhanced baseline at discharge	0.75 (0.73-0.76)	0.75 (0.74-0.76)
Full feature simple baseline at discharge	0.74(0.73 - 0.76)	0.73(0.72 - 0.74)
Baseline (mHOSPITAL ³) at discharge	0.70(0.68-0.72)	0.68(0.67-0.69)
Length of Stay at least 7 days AUROC (95% CI)		
Deep learning 24 hours after admission	0.86 (0.86-0.87)	0.85 (0.85-0.86)
Full feature enhanced baseline at 24 hours after admission	0.85(0.84-0.85)	0.83(0.83-0.84)
Full feature simple baseline at 24 hours after admission	0.83(0.82-0.84)	0.81(0.80-0.82)
Baseline $(mLiu^4)$ at 24 hours after admission	0.76(0.75-0.77)	0.74(0.73-0.75)

Full feature enhance baseline =

Linear model on top of measurements grouped by time buckets (1 day, 1 week, 1 month, 1 year, >1year)

Deep learning is not significantly better for two tasks

Elaborate deep learning model does not outperform a simple linear model

How complex a predictive model for routine care data should be?

.

.

Empirical study: planning and prevention with AP-HP data

Raw cohort from AP-HP (Paris hospitals) of 200,000 patients, two tasks:

- Long length of stay •
- Prognosis •

	Prognosis	
Description	Next stay prognosis: ICD10 chapter classification	
Task	Multi-Label binary classification (20 classes)	
Cohort Size	10,786	
Prevalence	From 1.3 to 55.9%	
Number of cases	From 139 to 6,029	

What model better predict the next stay diagnosis from the data of the previous stay?

Focus on ICD10 code prediction: chain aggregation and estimation

Timeline aggregation:

- Demographics (only static variables)
- Decayed counting
- Local embeddings
- SNDS embeddings
- Transformer embeddings

Increasing complexity

Events (i, c, t)			c,t)	X
Person ID	Visit ID	Event Code	Start	
Patient 1	Visit 1	ICD10:type 2 diabetes	2021-01-08 22:01:05	
Patient 1	Visit 1	Drug:Metformine	2021-01-08 22:01:08)
Patient 1	Visit 2	ICD10:Heart failure	2021-05-08 09:15:46	
Patient 1	Visit 2	Drug:Amiodarone	2021-05-08 10:15:45	Aggregation functions
Patient 1	Visit 2	CCAM: Interventional cardiovasculary imagery	2021-05-08 11:10:43	l count last first
Patient 2	Visit 3	ICD10: sepsis	2021-07-10 11:17:12	

Focus on ICD10 code prediction: chain aggregation and estimation

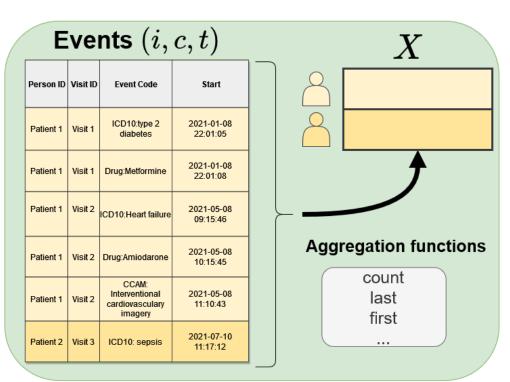
Timeline aggregation:

- Demographics (only static variables)
- Decayed counting
- Local embeddings
- SNDS embeddings
- Transformer embeddings

Estimator:

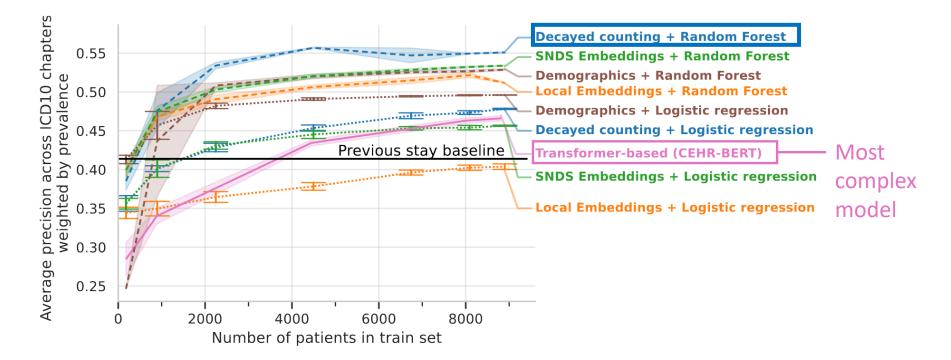
Linear model

- Random Forest
- _ _ _ -
- Transformer prediction head

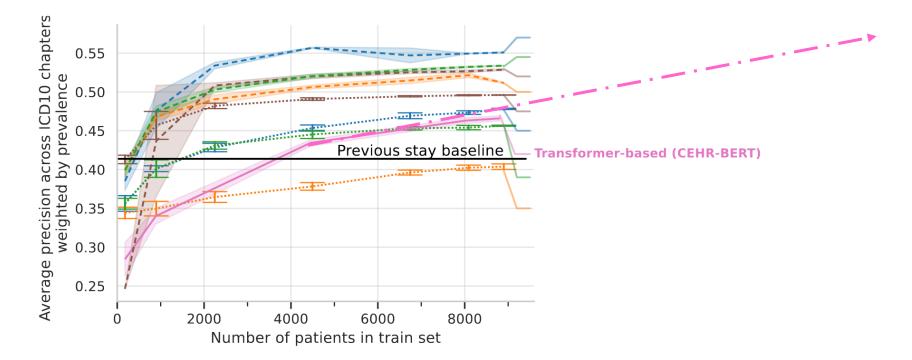


We benchmark a gradient of models: from simple to complex.

Results: ICD10 code prediction



Results: ICD10 code prediction

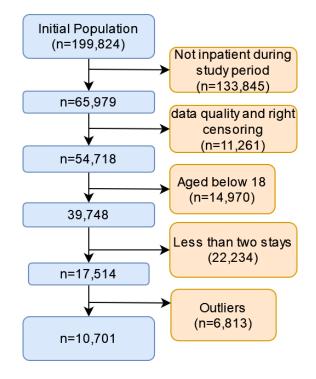


2. With more data, a complex transformer architecture could be the best model

Results: ICD10 code prediction



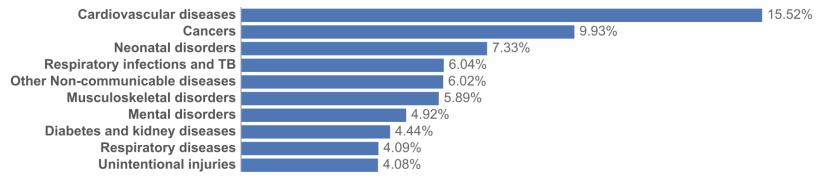
Selection flowchart (train + test)



3. We already use a lot of data: big healthcare data is not so big

A prevention task requiring big data: Major Adverse Cardiovascular Events

Cardiovascular diseases are the leading cause of death worldwide (>15%)



Share of total disease burden by cause (top ten), World, 2019

Data source: IHME, Global Burden of Disease (2019)

OurWorldInData.org/burden-of-disease | CC BY

A prevention task requiring big data: Major Adverse Cardiovascular Events

Cardiovascular diseases are the leading cause of death worldwide (>15%).

But in AP-HP data, the number of cases is small from a statistical learning perspective.

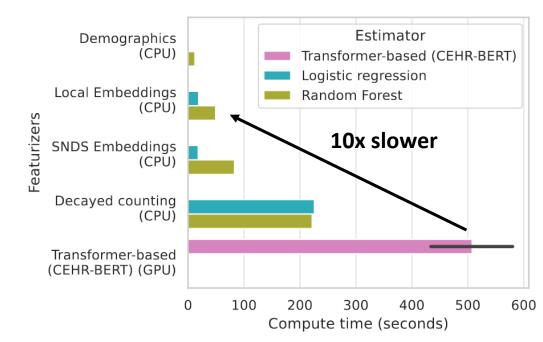
	MACE	
Task	Binary classification	
Description	MACE prognosis at one year	
Cohort Size	165,948	
Prevalence	2.6 %	
Number of cases 4,315		

A prevention task requiring big data: Major Adverse Cardiovascular Events

Cardiovascular diseases are the leading cause of death worldwide (>15%).

But in AP-HP data, the number of cases is still rare from a statistical learning perspective.

Computing resources are lacking for complex models.



Computational resources are needed for prevention but hard to collocate within hospital 27

How complex a prective model should be?

 \bigcirc Simple representations and estimators predict well for medium sized datasets. Random forest outperforms a transformer with 5 ROC-AUC points

 \bigcirc Data is not so big due to inclusion criteria and low prevalence.

From 2,000,000 patients to 4,316 cases

 \bigcirc Benchmarking predictive models requires more computing power that what is actually available for routine care data.

Less than a good laptop for each project

Prediction might not be all we need

- UK deployed the cardiovascular disease (CVD) Qrisk score, it is accurate and well calibrated.
- It is used to recommend statins, even for moderate CVD risks and primary prevention.

UK, N.C.G.C. (2014). Lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease.

Prediction might not be all we need

- UK deployed the cardiovascular disease (CVD) Qrisk score, it is accurate and well calibrated.
- It is used to recommend statins, even at moderate CVD risks and primary prevention.
- However, it did not reduce the burden of cardiovascular diseases.

Eriksen, C. U., Rotar, O., Toft, U. & Jørgensen, T. What is the effectiveness of systematic population-level screening programmes for reducing the burden of cardiovascular diseases? (World Health Organization. Regional Office for Europe, 2021).

Prediction might not be all we need

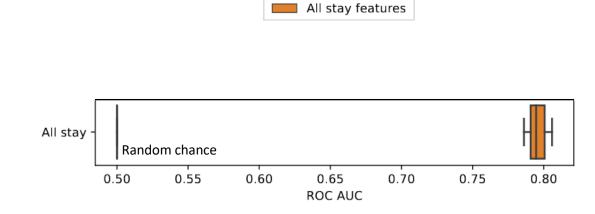
- UK deployed the cardiovascular disease (CVD) Qrisk score, it is accurate and well calibrated.
- It is used to recommend statins, even at moderate CVD risks and primary prevention.
- However, it did not reduce the burden of cardiovascular diseases.
- Probably because it did not target the responders and compliers.

Krska, J., du Plessis, R., & Chellaswamy, H. (2016). Implementation of NHS Health Checks in general practice: variation in delivery between practices and practitioners. *Primary health care research & development*

Prediction fails when not associated to an appropriate and realistic intervention

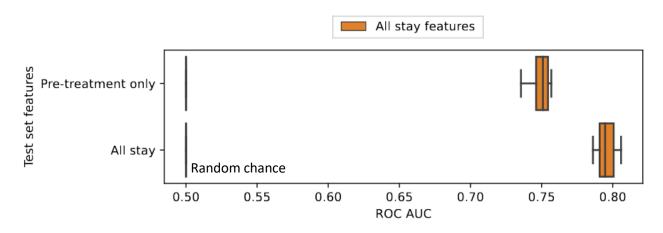
28-day mortality prediction informing the administration of fluids for sespis

- Train with post-treatment variables
- Evaluate on out-of-sample with the same variables (all stay)



28-day mortality prediction informing fluid administration for sespis

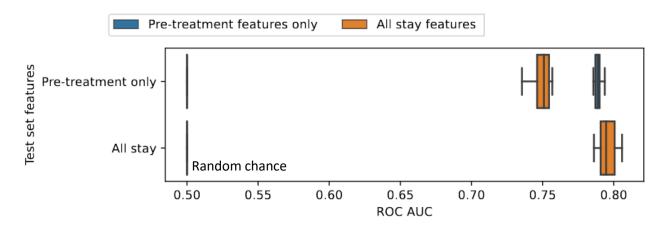
- Train with post-treatment variables
- Evaluate on a actionnable dataset with only pre-treatment variables



Relying on post-treatment variables (shortcut variables) hurts the performances

28-day mortality prediction informing fluid administration for sespis

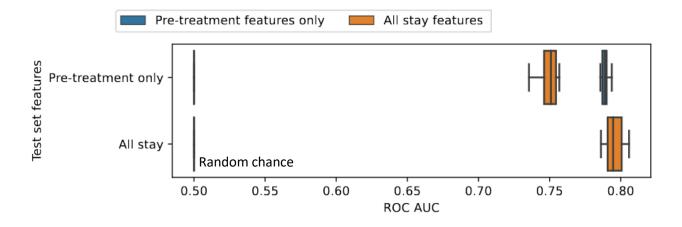
- Train with post-treatment variables
- Evaluate on a actionnable dataset with only pre-treatment variables



Taking into account the actionable intervention is needed to build useful algorithms

28-day mortality prediction informing fluid administration for sespis

- Train with post-treatment variables
- Evaluate on a actionnable dataset with only pre-treatment variables



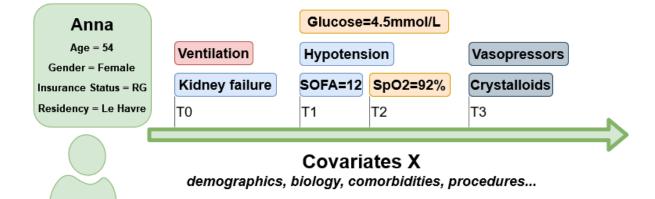
(Who would do that? Answer: A lot of studies!

Yuan, W., Beaulieu-Jones, B. K., Yu, K. H., Lipnick, S. L., Palmer, N., Loscalzo, J., ... & Kohane, I. S. (2021). Temporal bias in case-control design: preventing reliable predictions of the future. Nature communications, 12(1), 1107.

Failing to consider appropriate data damages predictive algorithms

Frame the problem

Richardson, W Scott, Mark C Wilson, Jim Nishikawa, Robert S Hayward, et al. (1995). "The well-built clinical question: a key to evidence-based decisions". In: Acp j club



Example: Patients with sepsis in the ICU

Anna Age = 54 Ventilation Hypotension Vasopressors

Example: Combination of crystalloids and albumin or Crystalloids only

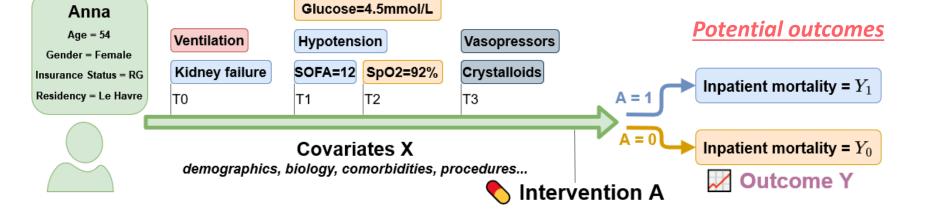
SFor whome, we consider giving intervention A=1 or control A=0

Frame the problem

Gender = Female

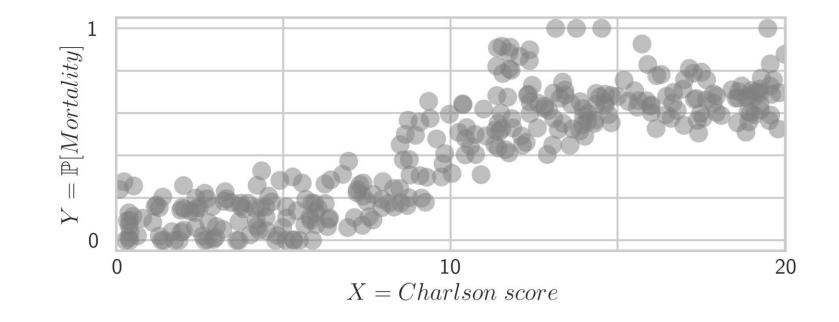
To improve a clinical outcome Y

Example: 28-day survival

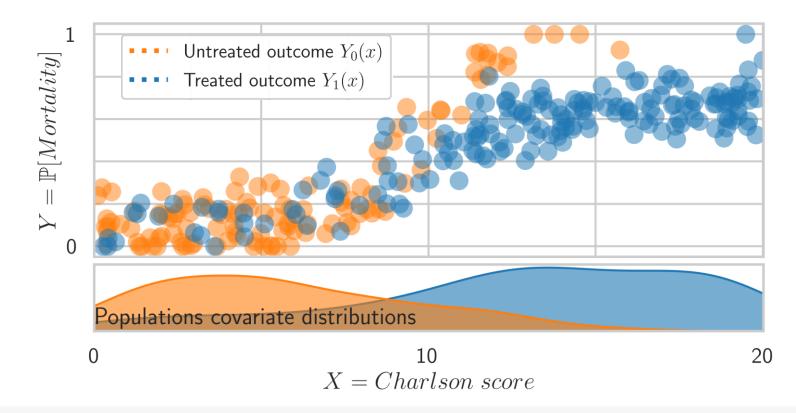


Frame the problem

Application with sampled data: outcomes and features

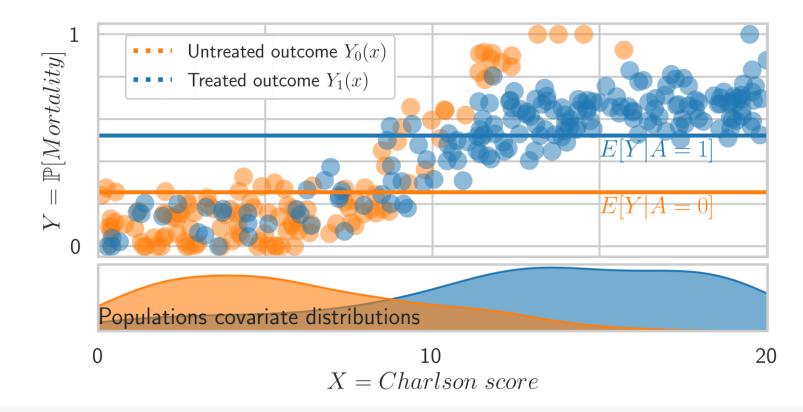


Application with sampled data: treatment and controls



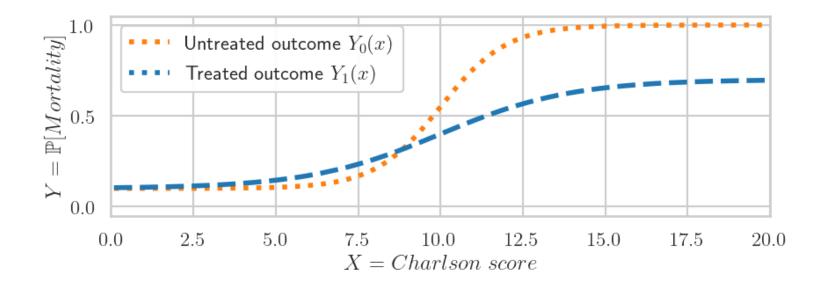
How to estimate the effect of the treatment on the outcome?

A naive (and biased) solution, difference in mean



We are not comparing apples to apples: the treated and the control differ too much

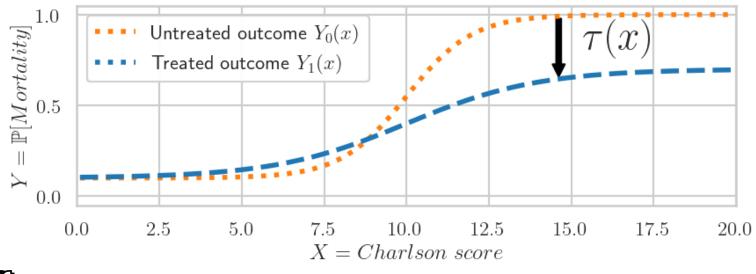
Potential outcomes, a robust statistical methodology



G. W. Imbens; D. B. Rubin (2015): Causal inference in statistics, social, and biomedical sciences. Cambridge University Press

The Neyman-Rubin framework postulates two potential outcomes curves

Potential outcomes, a robust statistical methodology



Estimates

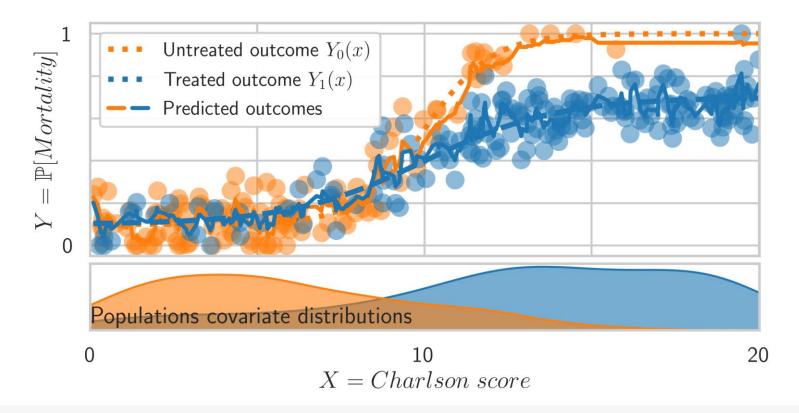
- Average Treatment Effect (ATE)
- Conditional Average Treatment Effect (CATE)

$$\tau = \mathbb{E}[Y(1) - Y(0)]$$

 $au(x) = \mathbb{E}[Y(1) - Y(0) \mid X = x]$

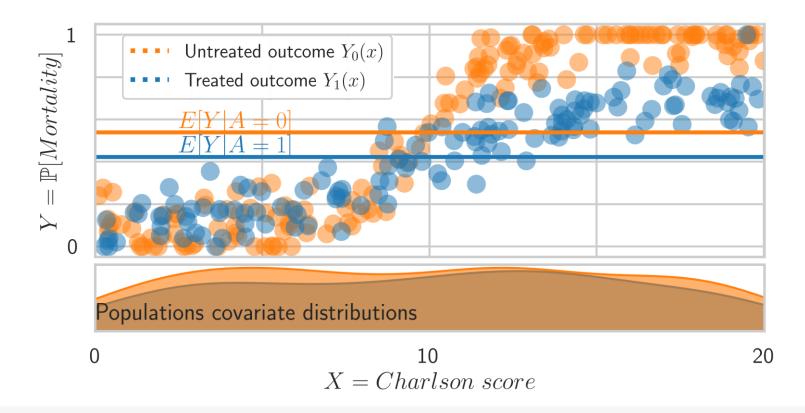
The estimate of the effect is the difference between the two potential outcomes

Model the outcome (G-formula) for tailored decision-making



Machine learning is well suited for the study of subpopulations

Randomized Controlled Trials (RCTs) for ATE



For the population effect, randomizing the treatment balances the populations

Between three worlds

S World 1 – Epidemiology: Carefully design the study (framing)

S World 2 – Causal Inference: Control the confounders (identification)

Select the model (estimation)

What ingredients from these three worlds do we need?

How to build robust decision-making algorithm from routine care data?

A causal framework comparing the three sources of bias

- 1) Framing study design
- 2) Identification list confounders
- 3) Estimation
- 4) Vibration analysis: Compare different reasonable choices for the average treatment effect (ATE)
- 5) Conditional Average Effect: Go beyond population effect, study heterogeneity of the effect (CATE)

Calibrate the analysis thanks to the gold standard result before look into heterogeneity 48

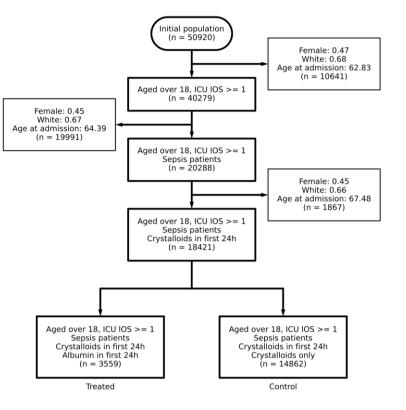
Case study with routine care data

Database: MIMIC-IV (opensource), 67,000 Intense Care Unit hospital stays

Question: In patients with sepsis, what is the effect of albumin in combination with crystalloids compared to crystalloids alone on 28-day mortality?

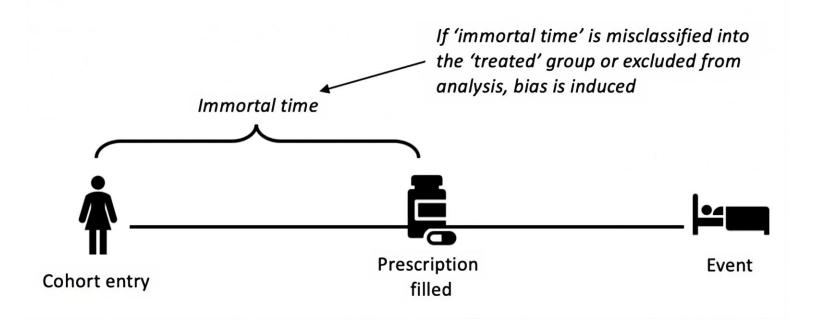
Cohort: 3,559 treated and 14,862 controls

Gold standard RCT: No effect



Caironi et al.(2014). *"Albumin replacement in patients with severe sepsis or septic shock". New England Journal of Medicine*

Step 1 – Poor study design

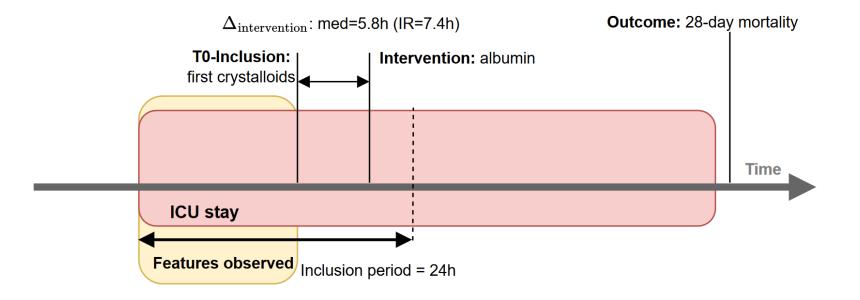


Lee, H. and D. Nunan (2020). Immortal time bias, Catalogue of Bias Collaboration. https://catalogofbias.org/biases/immortal-time-bias/

Step 1 – Poor study design

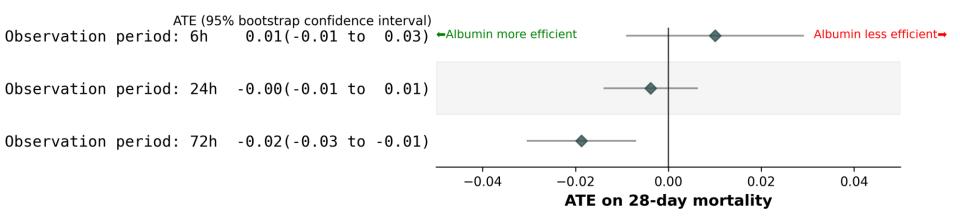
Following patients during a **specific time-period**

Example: During 24 first hours of hospitalization



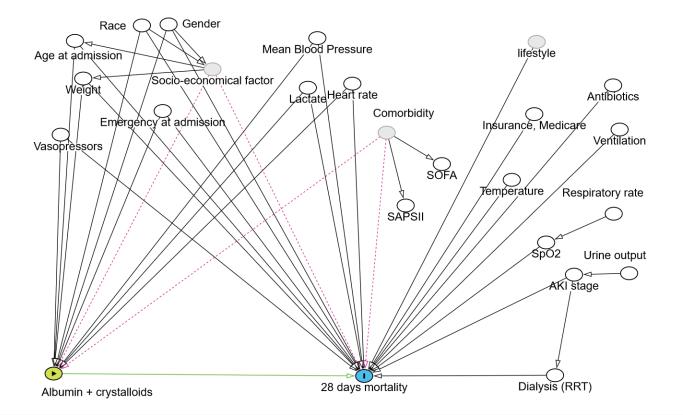
Immortal time bias is introduced because treatment and control are not aligned

Step 1 – Poor study design



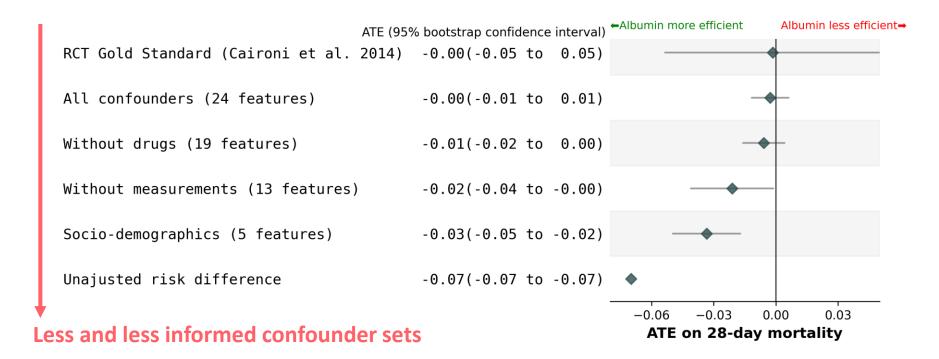
Poor design can lead to erroneous conclusions

Step 2 – Identification



List confounders to answer the question with a Directed Acyclic Graph

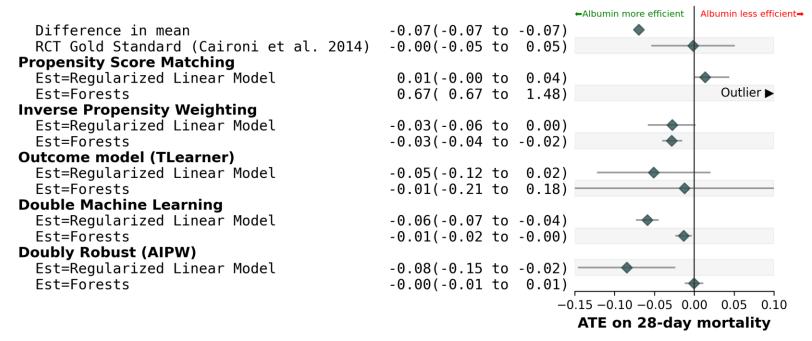
Step 2 – Compare less informed sets of confounders



An imperfect DAG including the main confounders still reduces bias

Step 3 – Compare different causal and statistical estimators

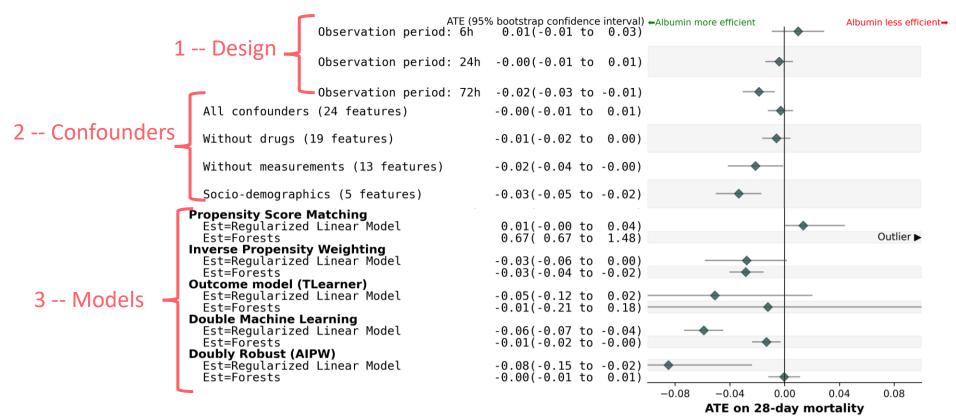
ATE (95% bootstrap confidence interval)



Random forests estimators and doubly robust methods retrieve the true effect

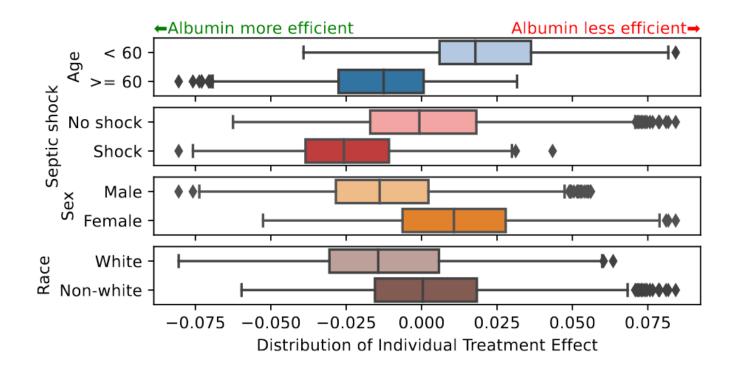
The choice of the causal estimator is important

Step 4 – Comparing the biases of all three steps



All steps are equally important for reasonnable analytical choices.

Step 5 – Beyond population effect: Heterogeneity of effect



Causal inference can suggest respondant subpopulations for tailored interventions

How to build robust decision-making algorithm from routine care data?

 \mathbf{Q} Study design, confounders and estimator choices are **all equally important** to reduce bias

 \bigcirc Valid conclusions can be obtained even if one of this step is not perfect, but **ignoring completely one of them endangers the study validity**

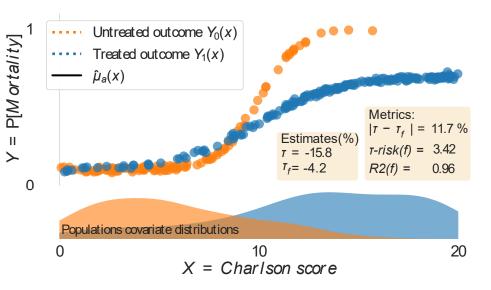
 \bigcirc Adjusting the parameters thanks to a vibration analysis and a gold standard trial allows to:

- catch some biases
- study the heterogenity of the effect

How to select predictive models for tailored decision making?

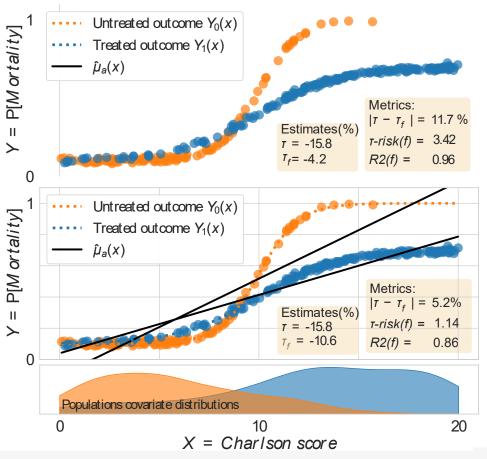
Model selection: Toy example

- Select model with small error between the outcome and the prediction on Out-Of-Samples
- Random Forest
 - **W** Almost perfect prediction (R^2)
 - \mathbf{P} Bad effect estimation (τ -Risk)



Model selection: Toy example

- Select model with small error between the outcome and the prediction on Out-Of-Samples
- Random Forest
 - **W** Almost perfect prediction (\mathbf{R}^2)
 - $\mathbf{\nabla}$ Bad effect estimation (τ -Risk)
- Linear model
 - **\mathbf{\nabla}** Worse prediction (\mathbf{R}^2)
 - \overline{W} Good effect estimation (τ -Risk)



An estimator can give a good estimate of the effect but predict poorly the outcome

Metric	Equation
$mse(\tau(x), \tau_f(x)) = \tau \operatorname{-risk}(f)$	$\mathbb{E}_{x \sim p(X)}[(\tau(x) - \hat{\tau}_f(x))^2]$ Oracle: Not observable
$mse(y, f(x)) = \mu \operatorname{-risk}(f)$	$\mathbb{E}_{(y,x,a)\sim \mathcal{D}}\left[(y - f(x;a))^2\right]$ Machine learning: Mean Squared Error

Metric	Equation
$mse(\tau(x), \tau_f(x)) = \tau \text{-risk}(f)$	$\mathbb{E}_{x \sim p(X)}[(\tau(x) - \hat{\tau}_f(x))^2]$
$mse(y, f(x)) = \mu \operatorname{-risk}(f)$	$\mathbb{E}_{(y,x,a)\sim\mathcal{D}}\left[(egin{array}{cc} y & - & f(x;a) \end{array})^2 ight]$
μ -risk $_{IPW}^*$	$\mathbb{E}_{(y,x,a)\sim\mathcal{D}}\left[\left(rac{a}{e(x)} + rac{1-a}{1-e(x)} ight) (oldsymbol{y} - oldsymbol{f}(x;a))^2 ight]$
$R\text{-risk}^* = \tau\text{-risk}_R$	$\mathbb{E}_{(y,x,a)\sim\mathcal{D}}\left[\left(\begin{array}{c c} y & - & m\left(x\right)\end{array}\right) - & (a - e\left(x\right)) & \hat{\tau}_{f}\left(x\right)\end{array}\right)^{2}\right]$

Metric	Equation
$mse(\tau(x), \tau_f(x)) = \tau$ -risk (f)	$\mathbb{E}_{x \sim p(X)}[(\tau(x) - \hat{\tau}_f(x))^2]$
$mse(y, f(x)) = \mu$ -risk (f)	$\mathbb{E}_{(y,x,a)\sim\mathcal{D}}\left[(egin{array}{cc} y & - & f(x;a) \end{array})^2 ight]$
μ -risk $^*_{IPW}$	$\mathbb{E}_{(y,x,a)\sim\mathcal{D}}\left[egin{array}{c} \left(rac{a}{e(x)}+rac{1-a}{1-e(x)} ight)(egin{array}{c} y & - & f(x;a) \end{array})^2 ight]$
$R\text{-risk}^* = \tau\text{-risk}_R$	$\mathbb{E}_{(y,x,a)\sim\mathcal{D}}\left[\left(\begin{array}{c c} y & - & m\left(x\right)\end{array}\right) - & (a - e\left(x\right)) & \hat{\tau}_{f}\left(x\right)\end{array}\right)^{2}\right]$

The R-risk is a weighted version of the oracle metric

Metric	Equation
$mse(\tau(x), \tau_f(x)) = \tau \text{-risk}(f)$	$\mathbb{E}_{x \sim p(X)}[(\tau(x) - \hat{\tau}_f(x))^2]$
$mse(y, f(x)) = \mu \operatorname{-risk}(f)$	$\mathbb{E}_{(y,x,a)\sim\mathcal{D}}\left[(egin{array}{cc} y & - & f(x;a) \end{array})^2 ight]$
μ -risk $_{IPW}^*$	$\mathbb{E}_{(y,x,a)\sim\mathcal{D}}\left[\left(rac{a}{e(x)} + rac{1-a}{1-e(x)} ight) (oldsymbol{y} - oldsymbol{f}(x;a))^2 ight]$
$R\text{-risk}^* = \tau\text{-risk}_R$	$\mathbb{E}_{(y,x,a)\sim\mathcal{D}}\left[\left(\begin{array}{c c} y & - & m\left(x\right)\end{array}\right) - & (a - e\left(x\right)) & \hat{\tau}_{f}\left(x\right)\end{array}\right)^{2}\right]$

How well a metric is ranking different treatment effect models compared to the oracle τ -Risk?

Empirical study

Simulated dataset, Caussim:

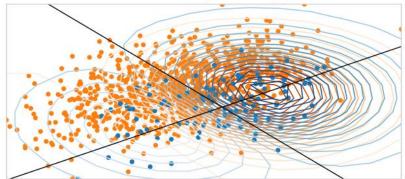
- Covariates with basis extension
- Overlap between treated and controls
- Potential outcomes Y(0) and Y(1)

Three semi-simulated datasets used in the causal inference literature:

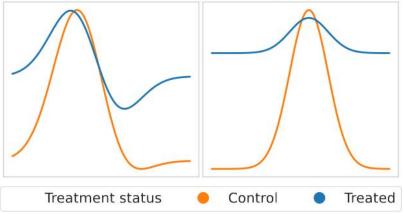
Real covariates, simulated treatment and outcomes

- ACIC2016
- ACIC2018
- Twins

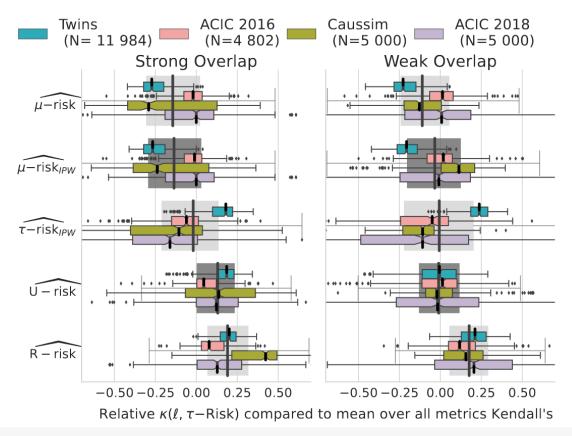
Simulation: D = 2, $\theta = 0.7$, seed=8



One-dimensional cuts of the response surfaces



Empirical study



The *R*-risk is the best metric for model selection: estimating nuisances is beneficial

67

How to select predictive models for tailored decision making?

 \bigcirc Selecting a model for intervention should use a different metric than for prediction

 \bigcirc The R-risk is a **reweighted version of the oracle metric**

Estimation of nuisances reduces bias for many different settings

Some perspectives

Where do we need to improve?

- 1) Framing study design: Data quality must improve. MIMIC-IV is not perfect but good enough thanks to open documentation, easy access and a strong link with the data collection since 20+ years.
- 2) Identification list confounders: Medical and statistical expertise required. Bring together the different communities with events focused on practical questions. *Matos, J., et al. MIT Critical Datathon 2023: a MIMIC-IV Derived Dataset for Pulse Oximetry Correction Models.*
- **3)** Estimation: Many existing methods. Text-based models have interesting potentials. *Jiang, L. Y., et al. (2023). Health system-scale language models are all-purpose prediction engines. Nature*
- 4) Vibration analysis: Elaborate models require huge amounts of compute. If this is the right direction, we need to change the collocation of compute and data. Jiang, L. Y., et al. (2023) used one of the biggest computing cluster of the east cost.
- **5) Conditional Average Effect:** Great opportunity for research. Nested trials will bring interesting insights. *Dahabreh, I. J., & Hernán, M. A. (2019). Extending inferences from a randomized trial to a target population. European journal of epidemiology.*

Where could causal inference methodology benefit the most?

• Not suitable for evaluating drug efficacy

Less robust than randomized control trials (maybe for drug life cycle)

- Interesting to evaluate cares with poor fundings for trials Such as public health interventions or procedures (national claims might be relevant)
- Improve machine learning with causal reasoning Identify responders and design tailored care pathways

- I. Exploring a complexity gradient in representation and predictive models for EHRs
- II. Prediction is not all we need: Causal thinking for decision making on EHRs M. Doutreligne, T. Struja, J. Abecassis, C. Morgand, L Celi, G. Varoquaux, <u>https://arxiv.org/abs/2308.01605</u>
- III. How to select predictive models for causal inference? M. Doutreligne, G. Varoquaux, <u>https://arxiv.org/abs/2302.00370</u>

IV. Potential and challenges of Clinical Data Warehouse, a case study in France

M. Doutreligne , A. Degremont, P.A. Jachiet, A. Lamer, X. Tannier <u>https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000298</u>

Supplementary slides for motivation

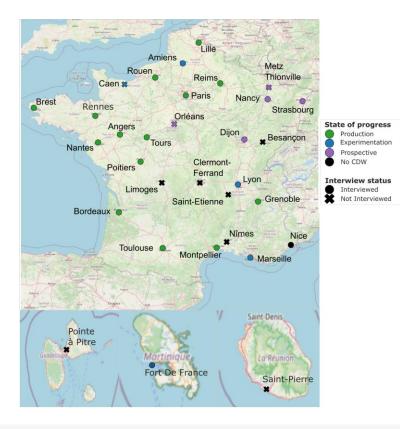
Worldwide initiatives to collect, organize and study health data

- German Medical Informatics Initiative, 2016
- English NHS funded OpenSAFELY platform, 2020
- US NIH funded CHoRUS network, 2022

Worldwide initiatives to collect, organize and study health data

- German Medical Informatics Initiative, 2016
- English NHS funded OpenSAFELY platform, 2020
- US NIH funded CHoRUS network, 2022
- French fundings for Clinical Data Warehouse , 2023

Doutreligne, M., Degremont, A., Jachiet, P. A., Lamer, A., & Tannier, X. (2023). Good practices for clinical data warehouse implementation: A case study in France.



What interventions are the most effective with constrained medical resources?

RCTs are costly and study of supopulations is difficult due to small samples

"Fewer than half of the clinical guidelines for the nine most common chronic conditions consider older patients with multiple comorbid chronic conditions." (Parekh; Barton, 2010)

RCTs measure efficacy (ideal conditions) rather than effectiveness (usual practices)

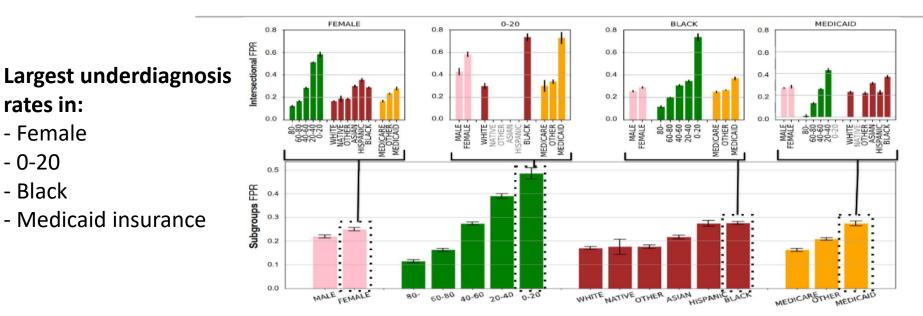
"Only 6% of asthmatics would have been eligible for their own treatment RCTs" (Travers et al., 2007)

Is it possible to leverage routine care data to complement available evidence?

- A. K. Parekh; M. B. Barton (2010): "The challenge of multiple comorbidity for the US health care system". Jama - J. Travers, S. Marsh, M. Williams, M. Weatherall, B. Caldwell, P. Shirtcliffe, S. Aldington; R. Beasley (2007): "External validity of randomised controlled trials in asthma: to whom do the results of the trials apply?" In: Thorax

Other failure modes of machine learning... eg. Exclusion of under-served populations for chest X-ray diagnosis

Automating CheXclusion With EHR + ML



Seyyed-Kalantari, Zhang, Liu, McDermott, Chen, Ghassemi.

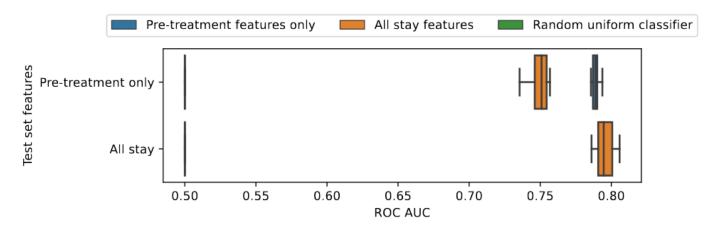
"Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations" Nature Medicine 2021.

Yet failure modes: example in intensive care

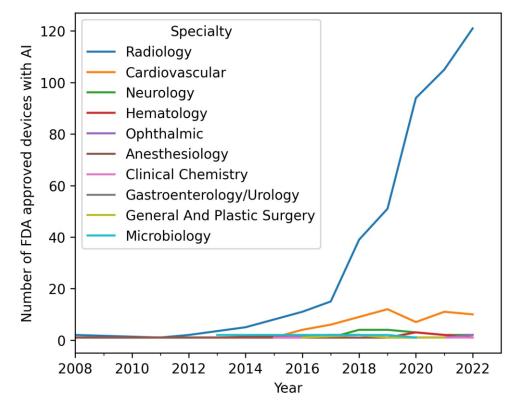
- Predict 28-day mortality, interested in fluid rescusitation treatment
- Train with post-treatment variables
- Evaluate on a clinically useful dataset with only pre-treatment variables

Yet failure modes: example in intensive care

- Predict 28-day mortality, interested in fluid rescusitation treatment
- Train with post-treatment variables
- Evaluate on a clinically useful dataset with only pre-treatment variables

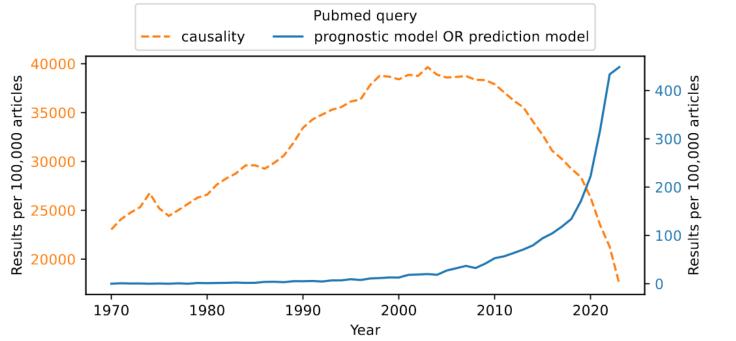


Slow adoption of medical devices with Al outside radiology



Benjamens, S., Dhunnoo, P., & Meskó, B. (2020). The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ digital medicine, 3(1), 118.

Prediction or causation



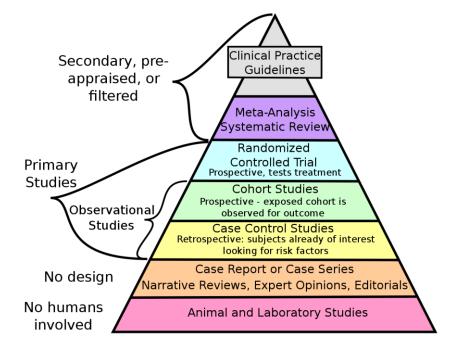
Proportion of articles by year in Pubmed returned by queries on causality or predictive modeling.

What interventions are the most effective with constrained medical resources?

First, measure efficacy (ideal conditions)

Medical guidelines built thanks to the scientific literature to recommend ideal care trajectories

Higher degree of evidence relies on metaanalyses of Randomized Controlled Trials (RCTs)

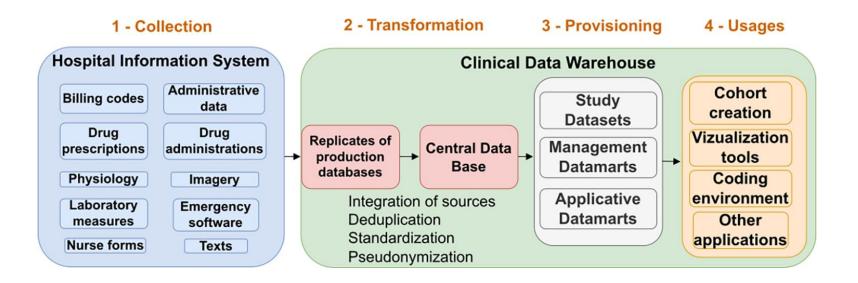


Hierarchy of evidences

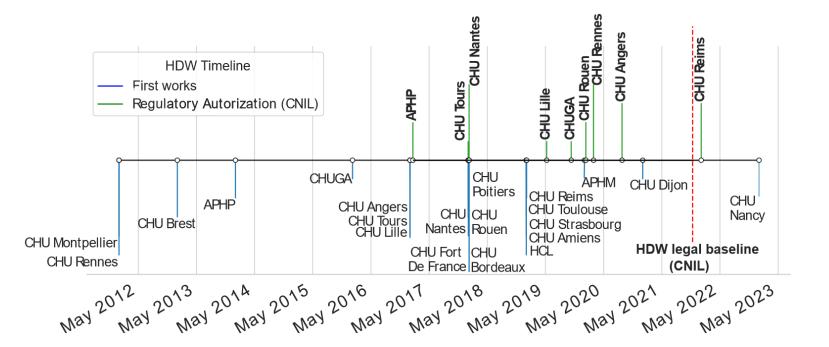
Supplementary slides for: Clinical Data Warehouse

Clinical data warehouse

Technical and organizational infrastructures pooling data from several medical information systems to homogeneous formats, for management, research or care reuses



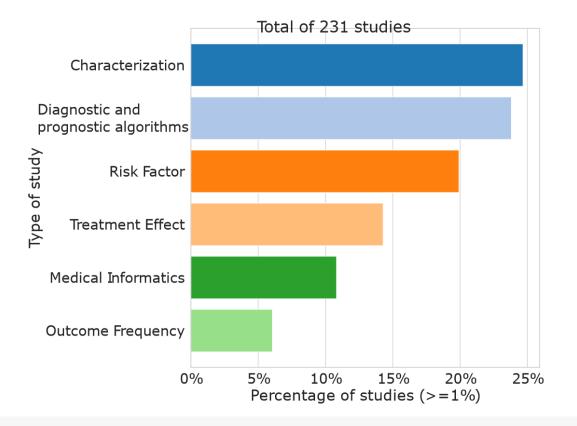
Timeline of CDWs implementation in french university hospitals



Type of data in CDWs

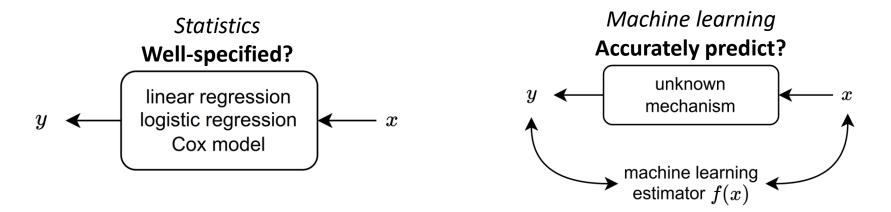
Category of data	Number of CDW	Ratio
Administrative	21	100~%
Billing Codes	20	95~%
Biology	20	95~%
Texts	20	95~%
Drugs	16	76~%
Imagery	4	19~%
Nurse Forms	4	19~%
Anatomical pathology	3	14~%
ICU	2	10~%
Medical devices	2	$10 \ \%$

Objective of studies

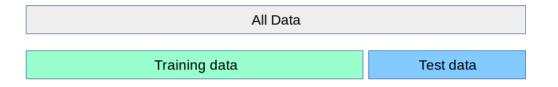


Supplementary slides for: predictive algorithms for EHR

Machine learning estimators are selected for their predictive accuracy



Out-of-samples validation avoids overfitting



L. Breiman, 2001, Statistical modeling: The two cultures (with comments and a rejoinder by the author)". Statistical science

Machine learning is not concerned with the data generation mechanism

What is the complexity of this healthcare data?

Machine learning predicts well in multiple domains

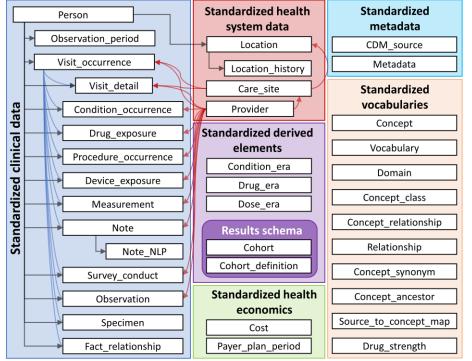
Images

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.

Text

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Routine care data?



OMOP standard data model

Machine learning literature for routine care data

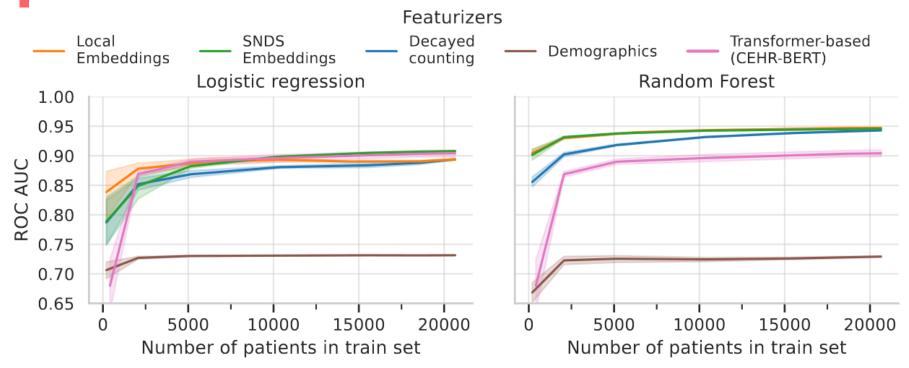
Table 3 Selected reports of machine- and deep-learning algorithms to predict clinical outcomes and related parameters			Developing diseases	704,587	range	Ν	
			Diagnosis	18,590	0.96	1	
Prediction	n	AUC	Publication (Reference	Dementia	76,367	0.91	C L
In-hospital	216,221	0.93*0.75+0.85"	number) Rajkomar et al. [%]	Alzheimer's Disease (+ amyloid imaging)	273	0.91	N e
mortality, unplanned readmission, prolonged LOS, final	ł			Mortality after cancer chemotherapy	26,946	0.94	E
discharge diagnosis All-cause 3-12	221,284	0.93	Avati et al.91	Disease onset for 133 conditions	298,000	range	R
month mortality	10/0	0.70	Champer at a1106	Suicide	5,543	0.84	V
Readmission Sepsis	1,068 230,936	0.78 0.67	Shameer et al. ¹⁰⁶ Horng et al. ¹⁰²	Delirium	18,223	0.68	W
Septic shock	16,234	0.83	Henry et al. ¹⁰³		number of patients (training+ validation datasets). For AUC ;; +, unplanned readmission; #, prolonged LOS; ^, all patients		
Severe sepsis	203,000	0.85®	Culliton et al. ¹⁰⁴	structured + unstructured data; + +, for University of Michigan site.			
Clostridium difficile infection	256,732	0.82++	Oh et al.93	Source: High-perfo and artificial intell			_

Machine learning predicts well a variety of medical endpoints

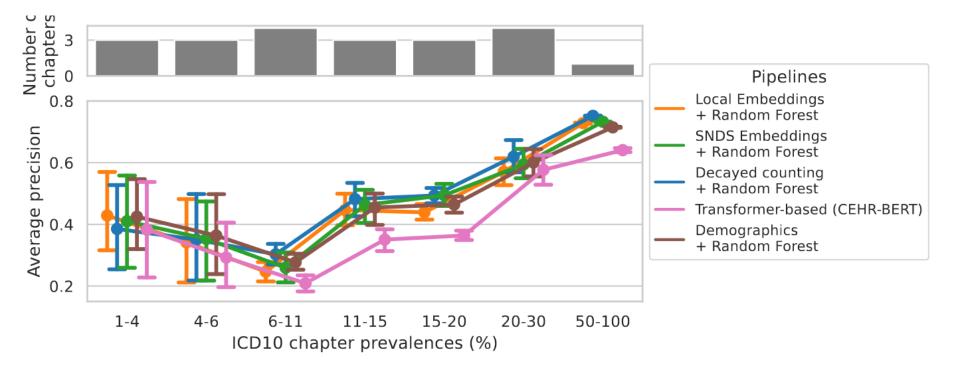
Length of stay results

	Long length of stay
Description	Long stay classification (longer than 7 days)
Task	Binary classification
Cohort Size	27,053
Prevalence	23.1%
Number of cases	6,249

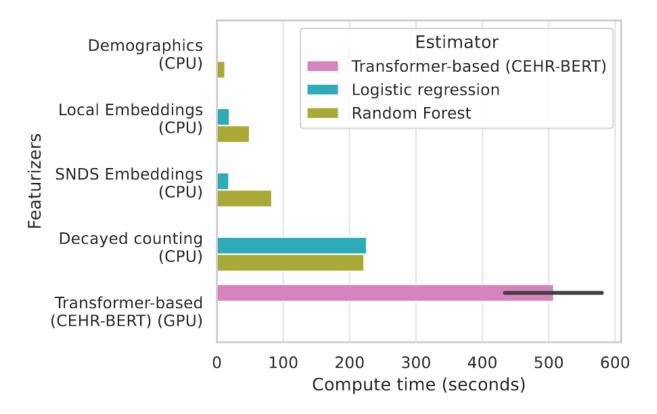
Length of stay results



High number of cases matters



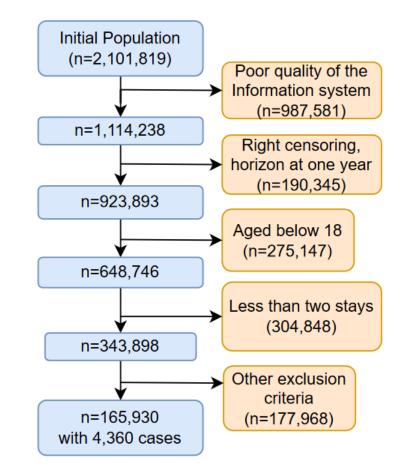
Static embeddings are quicker to train



The challenge of low prevalence Health data is big data?

A lot of sample « losses » due to:

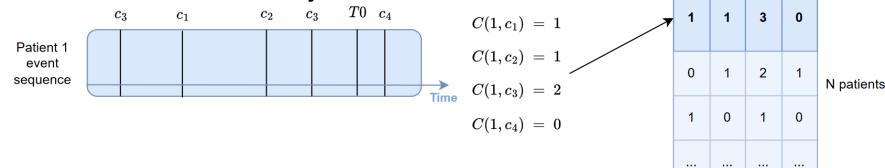
- Inclusion criteria
- Information system instability
- Censoring
- Rare outcomes



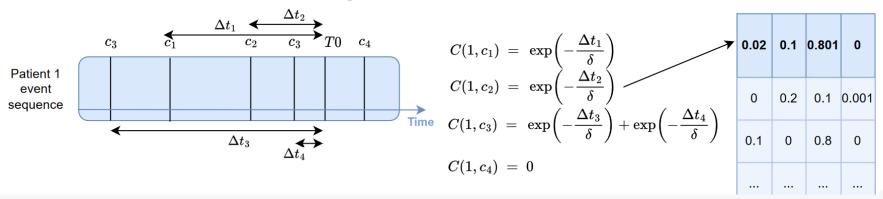
Engineering focus: chain patient representation and predictive model

Events (i, c, t)					X
	Person ID	Visit ID	Event Code	Start	
	Patient 1	Visit 1	ICD10:type 2 diabetes	2021-01-08 22:01:05	
	Patient 1	Visit 1	Drug:Metformine	2021-01-08 22:01:08)
	Patient 1	Visit 2	ICD10:Heart failure	2021-05-08 09:15:46	
	Patient 1	Visit 2	Drug:Amiodarone	2021-05-08 10:15:45	Aggregation functions
	Patient 1	Visit 2	CCAM: Interventional cardiovasculary imagery	2021-05-08 11:10:43	last first
	Patient 2	Visit 3	ICD10: sepsis	2021-07-10 11:17:12	

Computing patient features : count and decay



Patient features with time decay δ



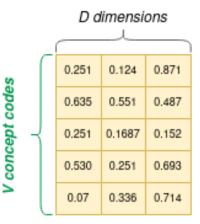
Computing patient features : adding the embeddings

Obtain patient features by collapsing the vocabulary dimension:

$$X = [C \cdot \Phi, C_{decay} \cdot \Phi]$$
 N patients

V concept codes





Sparse count matrix C

Embeddings Φ

Inspirated from word2vec

Distributional hypothesis (Haris, 1954): **Two words have close meaning iif** they appear in similar contexts.

Proximity in the embedding space is forced by proximity in the corpus.

Event2vec, a package to compute concept embeddings

- A python package available on pypi
- A pyspark version for big data (>500m rows)
- polars for medium sized datasets (up to 100m rows)
- Sklearn compatible transformers
- Quick start and step by step guides: <u>https://straymat.gitlab.io/event2vec/tutorials/_0_tuto_ev</u> <u>ent2vec.html</u>

Load events

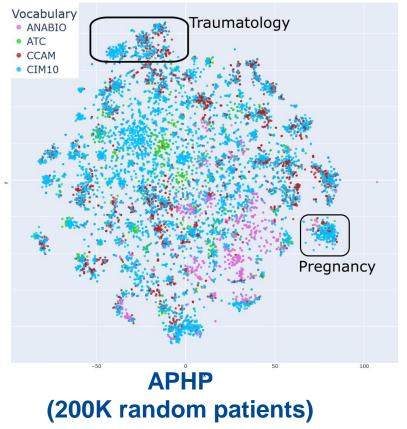
	person_id	start	event_source_concept_id
0	1	2018-11-08 19:24:15	CIM10:N182
4	1	2018-12-20 19:24:15	CCAM:JVJB01
8	2	1993-01-26 07:22:42	CIM10:E12
12	3	2009-04-25 10:14:21	CIM10:N182
9	2	2020-01-26 07:22:42	CIM10:E12

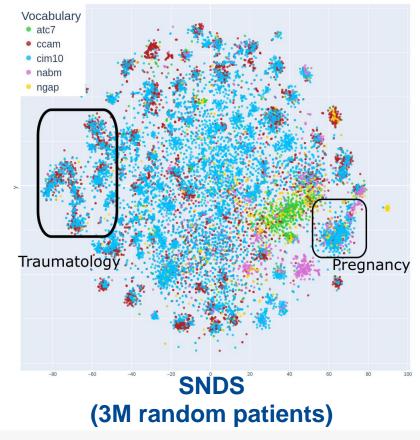
Build embeddings

```
alpha = 0.75
k = 1
d = 3
```

```
embeddings = event2vec(
    events=events,
    output_dir=output_dir,
    colname_concept="event_source_concept_id",
    window_orientation="center",
    window_radius_in_days=30,
    d=d,
    smoothing_factor=alpha,
    k=k,
    backend="pandas",
}
```

Qualitative results: https://straymat.gitlab.io/event2vec/visualizations.html





Nearest neighboors

Induced distance in embedding space with cosine similarity

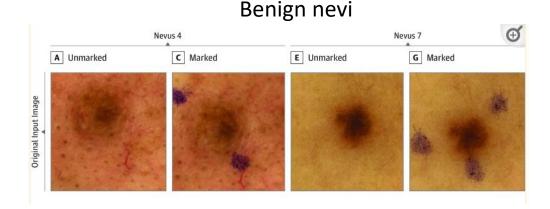
```
# ## Compute the 10 closest concepts
Run Cell | Run Above | Debug Cell
# %%
k = 50
source_concept_code = "I50" # Heart failure
# For SNDS
top_k_concepts = get_closest_nn(
    source_concept_code=source_concept_code,
    embedding_dict=snds_embeddings,
    concept_labels=concept_labels,
    k=k,
```

similarity
1.000
0.608
0.595
0.582
0.577
0.575
0.570
0.570
0.567
0.564
0.563
0.561
0.555
0.554
0.543
0.542

Supplementary slides for: Decision making with EHR

Failures because of shortcut features

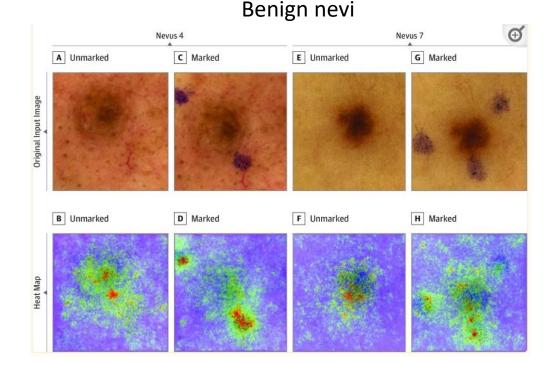
Prediction: malignent melanoma **Intervention:** excision of nevi



Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). "Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition". In: JAMA dermatology

These failures occur because of shortcut features

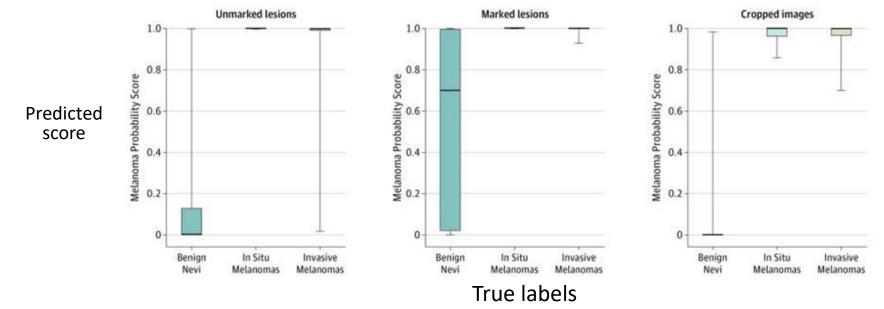
Prediction: malignent melanoma **Intervention:** excision of nevi **Shortcut:** surgical marks



Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). "Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition". In: JAMA dermatology

Predictive models fail because of shortcut features

Prediction: malignent melanoma Intervention: excision of nevi Shortcut: surgical marks



Winkler, Fink, Toberer, Enk, Deinlein, Hofmann-Wellenhof, Thomas, Lallas, Blum, Stolz, et al. (2019). "Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition". JAMA dermatology

Study design – Frame the question to avoid biases

Example (Mimic database usecase)

Patients with sepsis in the ICU

Target Population with features X

For whome, we consider giving the treament A=1 or the control A=0

To improve a **clinical outcome Y**

Following patients during a **specific time-period**

Combination of crystalloids and albumin or Crystalloids only

28-day survival

During 24 first hours of hospitalization

Contrast the intervention against the control on the outcome in the target population

Formal problem: Is an intervention effective?

Quantify the effect of a (binary) intervention **A** on an **outcome Y**

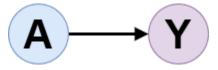
Example:

For patients with sepsis in the ICU requiring fluid rescuscitation

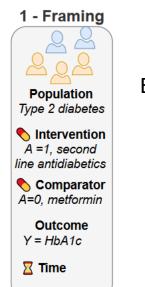
Should I give a combination of crystalloids and albumin

Or crystalloids only

To improve 28-day survival



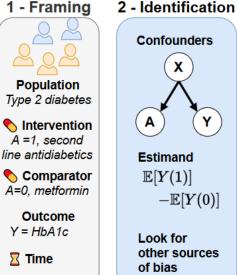
Causal graph

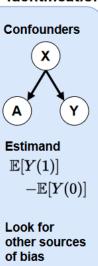


Emulate the **ideal trial** that you would conduct if you could recruit patients Hernan, 2021.

Hernan, Miguel A (2021). "Methods of public health research-strengthening causal inference from observational data". In: New England Journal of Medicine

Causal framework in real life: Identification



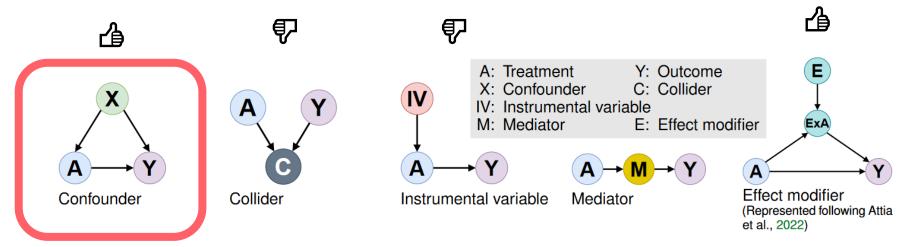


List necessary information to answer the causal question

VanderWeele, Tyler J (2019). "Principles of confounder selection". In: European journal of epidemiology

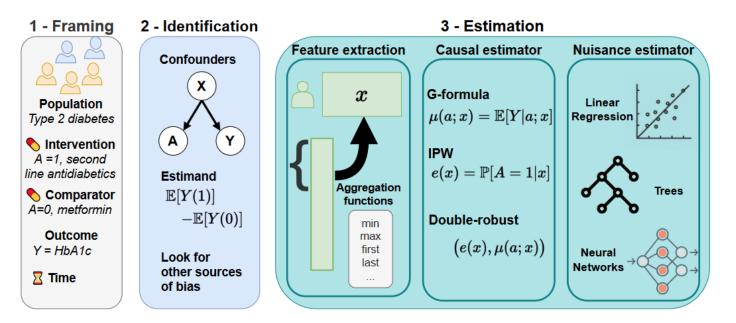
Identification - List necessary information to answer the causal question

Categorize variables in the data base



Focus on confounding

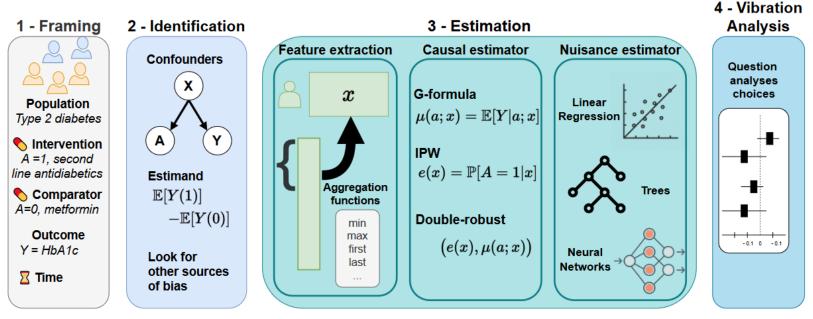
Causal Framework: Estimation



Select appropriate estimators

Wager, Stefan (2020). Stats 361: Causal inference.

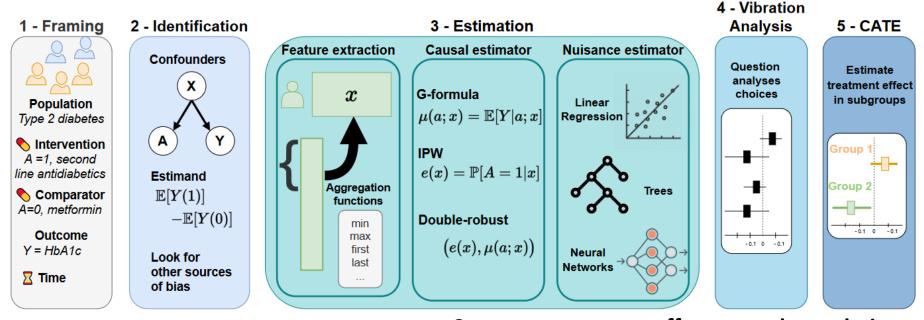
Causal Framework: Vibration analysis



Assess the robustness of the hypotheses

Patel, Burford, and Ioannidis (2015). "Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations". Journal of clinical epidemiology

Causal Framework: Treatment heterogeneity



Compute treatment effects on subpopulations

Robertson, Sarah E, Andrew Leith, Christopher H Schmid, and Issa J Dahabreh (2021). "Assessing heterogeneity of treatment effects in observational studies". American Journal of Epidemiology

Treatment heterogeneity – Compute treatment effects on subpopulations

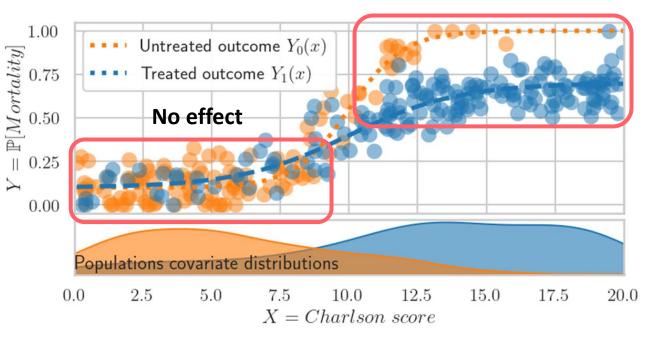
Does the effect vary in different subpopulations?

If yes, there is room for personalized treatment !

Strong effect

How to do that ?

- Take the most reliable estimate from previous steps
- Regress the individual estimations against targeted sources heterogeneity



What source of bias dominates ? A practical example

Many possible estimation choices

***** Feature aggregations

- Last value before the start of the follow-up period,
- First observed value,
- Both the first and last values as concatenated features.

Causal estimators

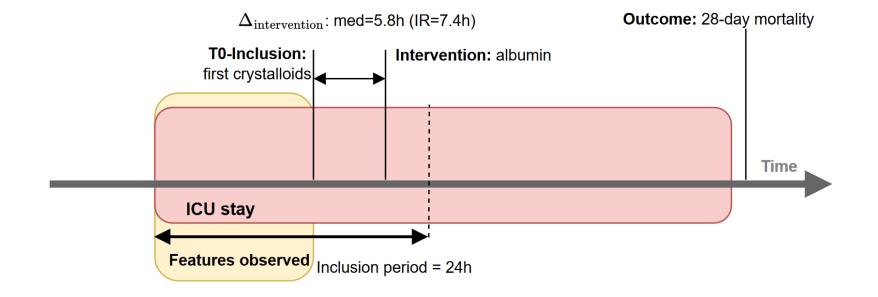
Inverse Propensity Weighting (IPW), outcome modeling (G-formula) with T-Learner, Augmented Inverse Propensity Weighting (AIPW) and Double Machine Learning (DML)

Outcome and treatment estimators: regularized logistic regression and random forest

Study design – focus on the time component

Following patients during a **specific time-period**

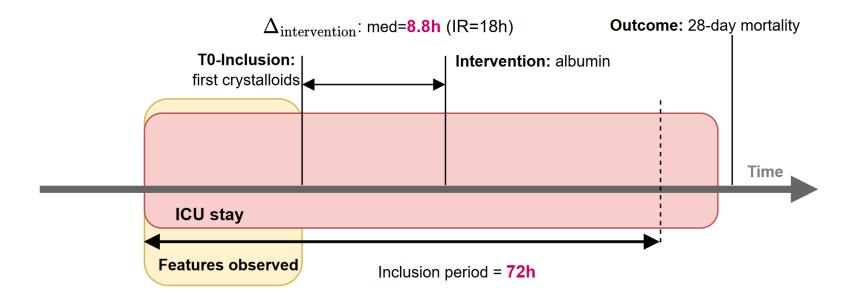
Eg. During 24 first hours of hospitalization



Study design – focus on the time component

Following patients during a **specific time-period**

Eg. During 72 first hours of hospitalization



Immortal time bias introduced with different inclusion times

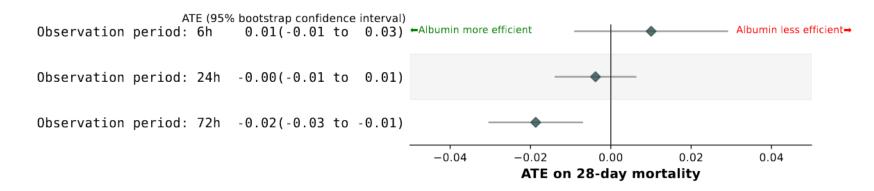
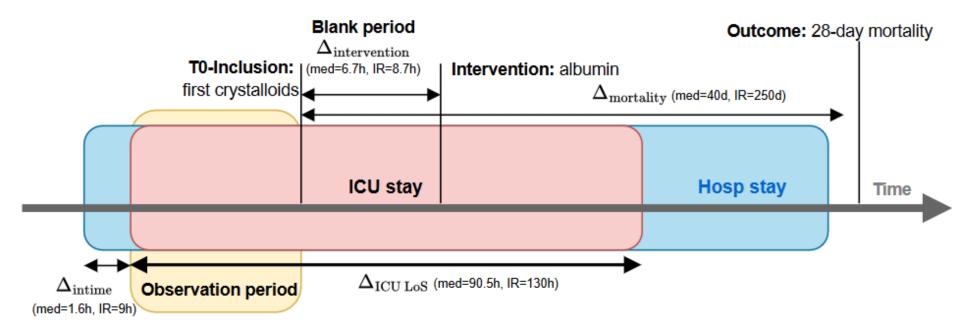


Figure 8: Detecting immortal time bias – Increasing the observation period increases the temporal blank period between inclusion and treatment initialization, associating thus patients surviving longer with treatment: Immortal Time Bias. A longer observation period (72h) artificially favors the efficacy of Albumin. The estimator is a doubly robust learner (AIPW) with random forests for nuisances. This result is consistent across estimators as shown in Appendix J. The green diamonds depict the mean effect and the bar are the 95% confidence intervals obtained by 30 bootstrap repetitions.

Another study project in nephrology where ITB was harder to control for: https://soda.gitlabpages.inria.fr/deepacau/#intervention-comparator

Immortal time bias introduced with different inclusion times



Selection flowchart for the usecase

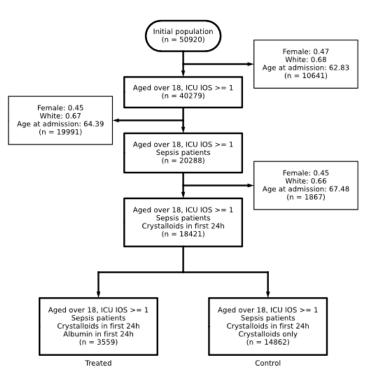


Figure 12: Selection flowchart on MIMIC-IV for the emulated trial.

Different choices of aggregation does not change the result

ATE (9)	5% bootstrap confidence interva	1]	Overlap (NTV)
		+Albumin more efficient	Albumin less efficient+
Difference in mean	-0.07(-0.07 to -0.07)) 🔶	
RCT Gold Standard (Caironi et al. 2014)	-0.00(-0.05 to 0.05)	· · · · · · · · · · · · · · · · · · ·
Inverse Propensity Weighting			
Agg=['median'], Est=Regularized Linear	-0.04(-0.07 to -0.02))	0.41
Agg=['last'], Est=Regularized Linear	-0.04(-0.06 to -0.02))	G.49
Agg=['first'], Est=Regularized Linear	-0.03(-0.05 to 0.00))	0.39
Agg=['first', 'last', 'median'], Est=Regularized Linear	-0.03(-0.05 to -0.00)	•	G.42
Agg=['median'], Est=Forests	-0.04(-0.05 to -0.02))	0.43
Agg=['last'], Est=Forests	-0.04(-0.05 to -0.02))	0.44
Agg=['first'], Est=Forests	-0.03(-0.05 to -0.02))	0.43
Agg=['first', 'last', 'median'], Est=Forests	-0.03(-0.05 to -0.01)		0.47
Double Machine Learning			
Agg=['median'], Est=Regularized Linear	-0.07(-0.08 to -0.05))	0.41
Agg=['last'], Est=Regularized Linear	-0.07(-0.08 to -0.06		0.49
Agg=['first'], Est=Regularized Linear	-0.07(-0.08 to -0.05)		0.39
Agg=['first', 'last', 'median'], Est=Regularized Linear	-0.06(-0.07 to -0.05))	G.42
Agg=['median'], Est=Forests	-0.02(-0.04 to -0.01)		0.43
Agg=['last'], Est=Forests	-0.03(-0.04 to -0.02)		G.44
Agg=['first'], Est=Forests	-0.02(-0.03 to -0.01)) —	0.43
Agg=['first', 'last', 'median'], Est=Forests	-0.01(-0.02 to -0.00)) -+-	G.47
Doubly Robust (AIPW)			
Agg=['median'], Est=Regularized Linear	-0.10(-0.16 to -0.04)	•	6.41
Agg=['last'], Est=Regularized Linear	-0.09(-0.14 to -0.03)	•	6.40
Agg=['first'], Est=Regularized Linear	-0.08(-0.14 to -0.02)	•	0.39
Agg=['first', 'last', 'median'], Est=Regularized Linear	-0.08(-0.14 to -0.02)	•	0.42
Agg=['median'], Est=Forests	-0.01(-0.02 to 0.00)		0.43
Agg=['last'], Est=Forests	-0.02(-0.03 to -0.00)) —	G.44
Agg=['first'], Est=Forests	-0.01(-0.02 to 0.00)) —•	0.43
Agg=['first', 'last', 'median'], Est=Forests	-0.00(-0.01 to 0.01))	G.47
		-0.15 -0.10 -0.05 0	.00 0.05
		ATE on 28-day mortal	ty

Figure 16: Vibration analysis dedicated to the aggregation choices. The choices of aggregation only marginally modify the results. When assessed with Normalized Total Variation, the overlap assumption is respected for all our choices of aggregation. The green diamonds depict the mean effect and the bar are the 95% confidence intervals obtained by 50 bootstrap repetitions.

Practical implementations issues

Packages	Simple installation	Confidence Intervals	sklearn estimator	sklearn pipeline	Propensity estimators	Doubly Robust estimators	TMLE estimator	Honest splitting (cross validation)
dowhy	 Image: A start of the start of	 Image: A set of the set of the	 Image: A start of the start of	1	1	×	×	×
EconML	1	1	1	Yes except for imputers	×	1	×	Only for doubly robust estimators
zEpid	 Image: A set of the set of the	1	×	X	1	1	1	Only for TMLE
causalml	x	1	~	1	1	1	1	Only for doubly robust estimators

Table 6: Selection criteria for causal python packages

Foundings:

- Counterfactual prediction lacks off-the-shelf cross-fitting estimators
- Good practices for imputation not implemented in EconML
- Bootstrap may not yield the more efficient confidence intervals and parametric confidence intervals are rarely implemented

Causal assumptions: 1 – Ignorability / Unconfoudneness

Consider all confounders capturing differences between **treated** and **control** populations impacting the outcome

 $\{Y(0), Y(1)\} \perp A | X$ Conditionally on features, treatment allocation is as random

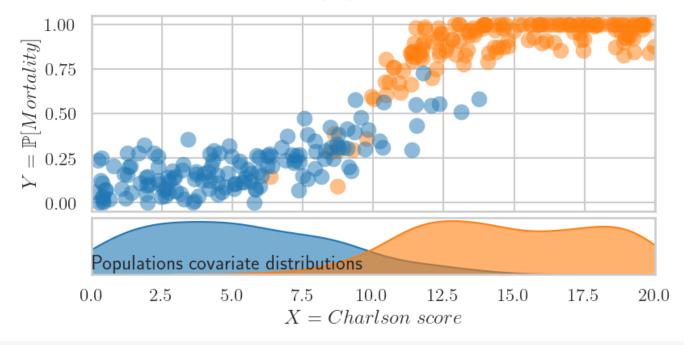
A Not verifiable with data only: Medical expertise needed 🔉

legally, **medical records** should contain all information considered for interventions

Causal assumptions: 2 – Positivity / Overlap

Treated and controls should be close enough ie. randomness in treatment allocation

$$\exists \eta > 0, st, \eta < e(x) < 1 - \eta \quad \forall x \in \mathcal{X}$$



Other (weaker) assumptions

3 - Consistancy

For a patient, the outcome corresponds to the potential outcome of its treatment.

$$Y_i = A_i Y_i(1) + (1 - A_i) Y_i(0)$$

All intervention are identical between individuals and there is no interactions.

4 – Identically and independtly distributed observations

Causal estimators

• IPW: $\hat{\tau}_{IPW} = \frac{1}{n} \sum_{i=1}^{n} \frac{a_i y_i}{\hat{e}(x_i)} + \frac{(1-a_i)y_i}{1-\hat{e}(x_i)}$

- G-formula : $\hat{\tau}_G(f) = \frac{1}{n} \sum_{i=1}^n f(x_i, 1) f(x_i, 0)$
- Augmented Inverse Propensity Weighting :

$$\widehat{\tau}_{AIPW} = \frac{1}{n} \sum_{i=1}^{n} \left(\widehat{\mu}_{(1)} \left(X_i \right) - \widehat{\mu}_{(0)} \left(X_i \right) + \frac{A_i - \widehat{e} \left(X_i \right)}{\left(1 - \widehat{e} \left(X_i \right) \right) \widehat{e} \left(X_i \right)} \left(Y_i - \widehat{\mu}_{(A_i)} \left(X_i \right) \right) \right)$$

W Heterogeneous Treatment Effect

• Double ML, built-in:

$$\hat{\tau}(\cdot) = \operatorname{argmin}_{\tau} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left((y_i - m(x_i)) - (a_i - e(x_i)) \tau(x_i^{cate}) \right)^2 \right\}$$

• Double Robust, final regression:

$$\arg\min_{\theta} \mathbb{E}_n \left[(\tilde{Y} - \theta(X_{CATE}) \cdot \tilde{A})^2 \right]$$

Where
$$\tilde{Y} = Y - \hat{\mu}(X, A)$$
 and $\tilde{A} = A - \hat{e}(X)$

Other emulated trials which could be studied in Mimic

Trial name	Criteria description	Number of patients	Criteria status	Implemented	Target RCT or meta-analysis reference
Fludrocortisone	Septic shock defined by the sepsis-3 criteria, first stay, over 18, not deceased during first 24 hours of ICU	28,763	target population	1	(Yamamoto et al., 2020)
combination for sepsis	Hydrocortisone administred and sepsis	1,855	control	1	
	Both corticoides administered and sepsis	153	intervention	1	
High flow oxygen therapy	Over 18, hypoxemia 4 h before planed extubation (PaO2, FiO2) \leq 300 mmHg), and either High Flow Nasal Cannula (HFNC) or Non Invasive Ventilation (NIV)	801	target population	×	(Stéphan et al., 2015), (Hernán and James M. Robins, 2016)
for hypoxemia	Eligible hypoxemia and HFNC	358	intervention	X	
	Eligible hypoxemia and NIV	443	control	X	
Routine oxygen for myocardial infarction	Myocardial infarction without hypoxemia at admission: - Myocardial infarction defined with ICD9-10 codes, first stay, over 18, not deceased during first 24 hours of ICU - Hypoxemia during first 2 hours defined as either (PaO2/FiO2) <i>leq</i> 300mmHg OR SO2 <i>leq</i> 90 OR SpO2 ≤ 90	3,379	target population	J	(Hofmann et al., 2017), (Stewart et al., 2021)
	Myocardial infarction without hypoxemia at admission AND Supplemental Oxygen OR Non Invasive Vent	1,901	intervention	1	
	Myocardial infarction without hypoxemia at admission AND no ventilation of any kind during first 12 hours	605	control	1	
Prone positioning for ARDS	Acute Respiratory Distress Syndrome (ARDS) during the first 12 hours defined as (PaO2,FiO2) <i>leq</i> 300mmHg, first stay, over 18, not deceased during 24 hours of ICU	11506	trial population	1	(Munshi et al., 2017)
101 Hilliob	Prone positioning and ARDS	547	intervention		
	Supline position and no prone position	10,904	control	1	
NMBA for ARDS	ARDS during the first 12 hours defined as (PaO2,FiO2) <i>leq</i> 300mmHg, first stay, over 18, not deceased during 24 hours of ICU	11,506	trial population	1	(Papazian et al., 2010), (Ho et al., 2020)
	Neuromuscular blocking agent (NBMA) as cisatracurium injections during the stay.	709	intervention	1	
	No NBMA during the stay	10,797	control	1	
Albumin for sepsis	Septic shock defined by the sepsis-3 criteria, first stay, over 18, not deceased during first 24 hours of ICU, having crystalloids	18,421	trial population	1	(Caironi et al., 2014), (B. Li et al., 2020), (Tseng et al., 2020)
	Sepsis-3 and crystalloids during first 24h, no albumin	14,862	control	1	
	Sepsis-3 and combination of crystalloids followed by albumin during first 24h	3,559	intervention	1	

Lessons learned

- Study design clarifies the question and helps to avoid biases
- Choice of the estimator affect the results, choice of aggregation is less important
- Vibration analysis important to catch some bias
- Event imperfect causal graph reduce bias
- Vibration analysis require software skills (measurement tables is 300M rows in MIMIC) <u>https://github.com/soda-inria/causal_ehr_mimic/tree/main/caumim</u>
 No python packages for estimation with all best statistical practices and estimators

Supplementary slides for: How to select causal models?

Empirical study: results

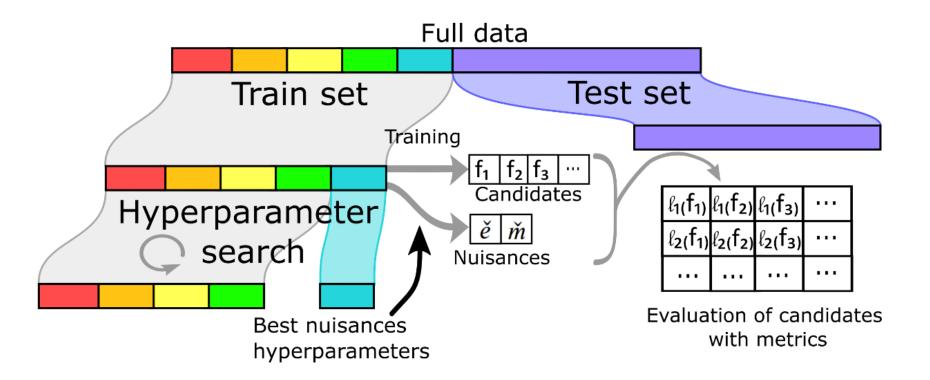
How well a metric rank models compared to the oracle τ -Risk, measured with Kendall κ

$$\kappa = \frac{\text{(number of concordant pairs)} - \text{(number of discordant pairs)}}{\text{(number of pairs)}}$$

Remove inter-dataset variation by substracting mean Kendall over all metrics

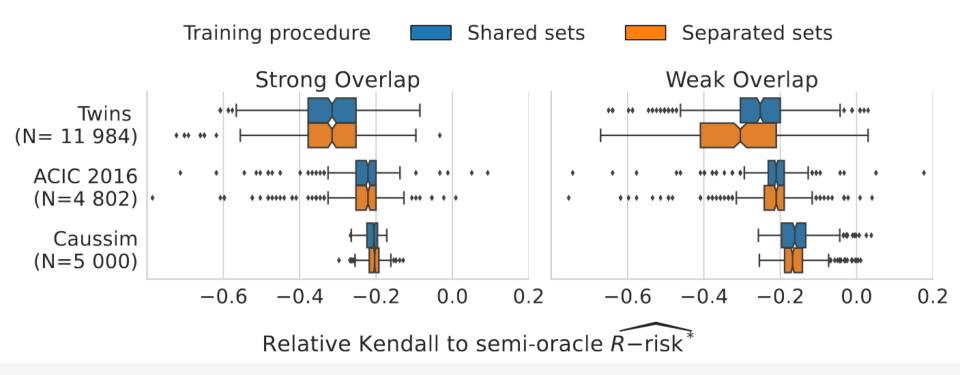
$$\kappa(\ell, \tau - \mathrm{risk}) - mean_{\ell}(\kappa(\ell, \tau - \mathrm{risk}))$$

Empirical study: estimation procedure



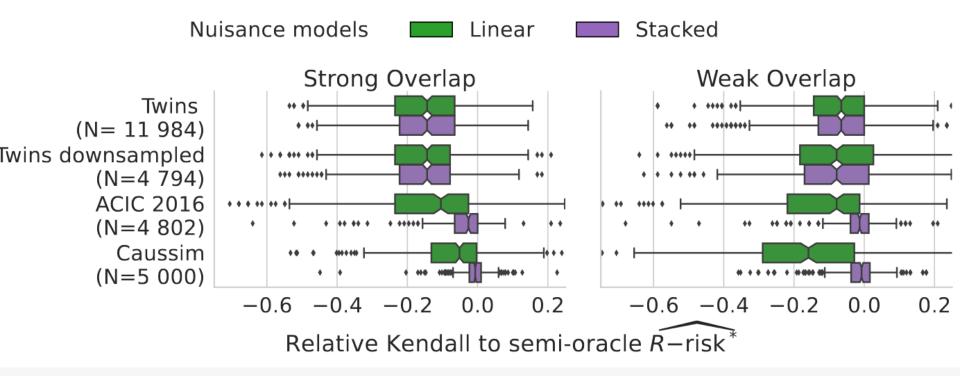
Representations and inference from time-varying routine

Nuisances can be estimated on the same data as outcome model



Empirical study: results

Stacked models are good overall estimators of nuisances



Empirical study: Model selection is harder for low population overlap

